这两道题还是比较简单的,没有什么难度

不过归在数论这个专题里我还是比较认同的,多少有些关系

3292

题目大意:给你一个范围n,让你求出这个范围内所有形式类似\(4k+1(k为正整数)\)的数中的H-semi-primes的个数

所谓H-semi-primes,就是在一个由两个H-primes相乘得到的数。其中H-primes就是在这些数范围内的素数。什么意思?就是在所有的形式如上的数中不能由其它这种形式的数相乘得到的。

例如,9就是一个H-primes,虽然它在自然数范围内并不是素数。但是由于在这些形式的数中并没有它的真因数,因此它就是H-primes。

所以我们只需要用一种类似于筛法的东西筛去所有非H-primes,然后就可以得出所有的H-semi-primes。然后累加打表即可

具体看CODE

#include<cstdio>
using namespace std;
const int N=1000005;
int ans[N],n;
bool vis[N];
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch=tc();
while (ch<'0'||ch>'9') ch=tc();
while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=tc();
}
inline void write(int x)
{
if (x/10) write(x/10);
putchar(x%10+'0');
}
inline void init(int n)
{
register int i,j; int tot=0;
for (i=5;i<n;i+=4)
for (j=5;j<n;j+=4)
{
int m=i*j; if (m>n) break;
if (!ans[i]&&!ans[j]) ans[m]=1; else ans[m]=-1;
}
for (i=1;i<=n;++i)
{
if (!(ans[i]^1)) ++tot;
ans[i]=tot;
}
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i,j; init(N);
for (;;)
{
read(n); if (!n) break;
write(n); putchar(' '); write(ans[n]); putchar('\n');
}
return 0;
}

2115

这还是一道比较入门的扩欧水题

题目大意:有一个循环形式如题目所说,然后问它在无符号整数(位数为k)的情况下运行的情况。

如果是死循环就输出"FOREVER",否则输出循环步数

这还是很简单的,我们先对题意进行简化。首先我们知道这样的运行越界后其实是自动模\(2^k\) 的,然后我们可以得出方程,其中我们设要操作的次数为\(x\),那么我们要的结果就是\(x\)的最小非负整数解

\((A+Cx) \equiv B (mod\ 2^k)\)

然后我们对于这个同余方程可以通过经典的方法来扩欧求解

我们通过\(mod\)的性质可以知道,设\(mod\)操作减去了\(2^ky\)次,即有新的不定方程

\(A+Cx-2^ky=B\)

移项后为:

\(Cx-2^ky=B-A\)

然后我们直接套扩欧的板子即可,这里注意有解的必要条件为\(gcd(C,2^k)\mid B-A\)

CODE

#include<cstdio>
using namespace std;
typedef long long LL;
LL A,B,C,K,a,b,c,d,x,y;
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(LL &x)
{
x=0; char ch=tc();
while (ch<'0'||ch>'9') ch=tc();
while (ch>='0'&&ch<='9') x=x*10+ch-'0',ch=tc();
}
inline void write(LL x)
{
if (x/10) write(x/10);
putchar(x%10+'0');
}
inline void exgcd(LL a,LL b,LL &d,LL &x,LL &y)
{
if (!b) { d=a; x=1; y=0; return; }
exgcd(b,a%b,d,y,x); y-=x*(a/b);
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
for (;;)
{
read(A); read(B); read(C); read(K);
if (!A&&!B&&!C&&!K) break;
a=C; b=1LL<<K; c=B-A; exgcd(a,b,d,x,y);
if (c%d) { puts("FOREVER"); continue; }
b/=d; c/=d; write((((x%b)*c)%b+b)%b); putchar('\n');
}
return 0;
}

POJ3292&&2115的更多相关文章

  1. 【BZOJ】2115: [Wc2011] Xor

    http://www.lydsy.com/JudgeOnline/problem.php?id=2115 题意:给出一个n个点m条边的无向连通边加权图,求1-n的某条路径使得异或值最大(可以重复点可以 ...

  2. BZOJ 2115 Xor(抑或值最大路径)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2115 题意:给出一个带权无向图.求一条1到n的路径使得路径上权值的抑或值最大? 思路:( ...

  3. bzoj 2115: [Wc2011] Xor xor高斯消元

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 797  Solved: 375[Submit][Status] ...

  4. BZOJ 2115: [Wc2011] Xor

    2115: [Wc2011] Xor Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 2794  Solved: 1184 [Submit][Stat ...

  5. POJ 2115 C Looooops(扩展欧几里得应用)

    题目地址:POJ 2115 水题. . 公式非常好推.最直接的公式就是a+n*c==b+m*2^k.然后能够变形为模线性方程的样子,就是 n*c+m*2^k==b-a.即求n*c==(b-a)mod( ...

  6. #数论-模运算#POJ 1150、1284、2115

    1.POJ 1150 The Last Non-zero Digit #质因数分解+模运算分治# 先贴两份题解: http://www.hankcs.com/program/algorithm/poj ...

  7. 数学#扩展欧几里德 POJ 1061&2115&2891

    寒假做的题了,先贴那时写的代码. POJ 1061 #include<iostream> #include<cstdio> typedef long long LL; usin ...

  8. POJ-3292 Semi-prime H-numbers---筛素数

    题目链接: https://vjudge.net/problem/POJ-3292 题目大意: 定义一种数叫H-numbers,它是所有能除以四余一的数. 在H-numbers中分三种数: 1.H-p ...

  9. bzoj 2115 Xor - 线性基 - 贪心

    题目传送门 这是个通往vjudge的虫洞 这是个通往bzoj的虫洞 题目大意 问点$1$到点$n$的最大异或路径. 因为重复走一条边后,它的贡献会被消去.所以这条路径中有贡献的边可以看成是一条$1$到 ...

随机推荐

  1. Android常用数据类型转换

    String转int.float.double.byte[].bitmap Int i = Integer.parseInt(str); Float f = Float.parseFloat(str) ...

  2. springcloud 入门 10 (eureka高可用)

    eureka高可用: 说白了,就是加一个实例作为原实例的备份,然后一起对外提供服务.这样可以保证在一台机器宕机的时候,整个系统不会死掉.保证其继续对外服务. eureka的集群化: 服务注册中心Eur ...

  3. C# winform三种定时方法

    1. 直接用winform 的 timers 拖控件进去 代码 public partial class Form1 : Form     {         public Form1()       ...

  4. (后端)Java新人入职——配置环境及安装开发工具(完全)

    转自csdn:执笔记忆的空白 很多新人对于进入新公司,相关工具的安装和环境变量的设定很苦恼.又苦于没有完整的配置开发环境的资料,我这里写一篇操作步骤的案例, 至少让你能把开发工具安装起来,并实用起来, ...

  5. linux下zip文件解压乱码的问题

    因为编码问题,zip文件中的中文文件在linux下解压会出现乱码 如果你使用archlinux那么使用AUR安装unzip-natspec就可以解决这个问题 https://aur.archlinux ...

  6. 03-12_MBean层次结构

    本文重点: Mbeans层次结构与WLST关系介绍 WebLogic Mbeans的类型 weblogic服务器的MBeans生命周期             Mbeans层次结构与WLST关系介绍: ...

  7. 【PAT】B1055 集体照(25 分)

    很简单的two points问题 ##注意:K是行数 #include<stdio.h> #include<string.h> #include<map> #inc ...

  8. Win10系统电脑桌面图标没有了怎么办

    win10系统相对来说还是有些不稳定的,有时候打开电脑会发现,桌面上的图标不见了,遇见这种情况,先别着急,可以使用两种很简单的方法来解决. 方法一: 在桌面上右键,点击查看,看“显示桌面图标”这一项前 ...

  9. 06LaTeX学习系列之---TeXstudio的使用

    目录 目录 前言 (一)TeXstudio的认识 1.TeXstudio的安装 2.TeXstudio的优点 3.Texstudio的界面 (二)TeXstudio的编译与查看 (三)TeXstudi ...

  10. oracle用户权限和角色

    用户权限是最基本的数据库安全控制.其作用就是控制用户对数据的访问,sql语句的执行.当oracle用户创建的时候,可以通过授权来控制用户对数据的连接,数据库对象的操作等等. 在oracle中,分为两种 ...