【BZOJ2287】【POJ Challenge】消失之物

Description

ftiasch 有 N 个物品, 体积分别是 W1W2, ..., WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。

Input

第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。

第2行: N 个整数 W1W2, ..., WN, 物品的体积。

Output

一个 N × M 的矩阵, Count(i, x)的末位数字。

Sample Input

3 2
1 1 2

Sample Output

11
11
21

HINT

如果物品3丢失的话,只有一种方法装满容量是2的背包,即选择物品1和物品2。

题解:做这种题的一般套路就是:不包含i的方案=总方案-包含i的方案
我们先求出总方案f[i],然后设g[i]为不包含i的方案,得到

g[i]=f[i]-f[i-w[i]]

但是发现f[i-w[i]]里可能也包含i,我们要将他们加回来,并以此类推

g[i]=f[i]-f[i-w[i]]+f[i-2*w[i]]-...

发现其实就是这样

g[i]=f[i]-g[i-w[i]]

#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int n,m;
int f[2010],g[2010],w[2010];
int main()
{
int i,j,k;
scanf("%d%d",&n,&m);
f[0]=1;
for(i=1;i<=n;i++)
{
scanf("%d",&w[i]);
for(j=m;j>=w[i];j--) f[j]=(f[j]+f[j-w[i]])%10;
}
for(i=1;i<=n;i++)
{
for(j=0;j<w[i];j++) g[j]=f[j];
for(j=w[i];j<=m;j++) g[j]=(f[j]-g[j-w[i]]+10)%10;
for(j=1;j<=m;j++) printf("%d",g[j]);
printf("\n");
}
return 0;
}

【BZOJ2287】【POJ Challenge】消失之物 背包动规的更多相关文章

  1. [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理

    消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...

  2. 【bzoj2287】[POJ Challenge]消失之物 背包dp

    题目描述 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢? ...

  3. bzoj2287 [POJ Challenge]消失之物

    题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...

  4. bzoj2287:[POJ Challenge]消失之物

    思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...

  5. BZOJ.2287.[POJ Challenge]消失之物(退背包)

    BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...

  6. POJ Challenge消失之物

    Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...

  7. 【bozj2287】【[POJ Challenge]消失之物】维护多值递推

    (上不了p站我要死了) Description ftiasch 有 N 个物品, 体积分别是 W1, W2, -, WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 ...

  8. vijos1431[noip2007]守望者的逃离(背包动规)

    描述 恶魔猎手尤迪安野心勃勃,他背叛了暗夜精灵,率领深藏在海底的娜迦族企图叛变.守望者 在与尤迪安的交锋中遭遇了围杀,被困在一个荒芜的大岛上.为了杀死守望者,尤迪安开始对这 个荒岛施咒,这座岛很快就会 ...

  9. BZOJ 2287: 【POJ Challenge】消失之物( 背包dp )

    虽然A掉了但是时间感人啊.... f( x, k ) 表示使用前 x 种填满容量为 k 的背包的方案数, g( x , k ) 表示使用后 x 种填满容量为 k 的背包的方案数. 丢了第 i 个, 要 ...

随机推荐

  1. Memory leak patterns in JavaScript

    Handling circular references in JavaScript applications Plugging memory leaks in JavaScript is easy ...

  2. Nginx 安装与启动

    安装 第一种安装方式:CentOS 7下配置 yum 安装 Nginx. 按照官方的安装实例:https://www.nginx.com/resources/admin-guide/ 第一步,在/et ...

  3. JavaScript之Web通讯

    web通信,一个特别大的topic,涉及面也是很广的.因最近学习了 javascript 中一些 web 通信知识,在这里总结下.文中应该会有理解错误或者表述不清晰的地方,还望斧正! 一.前言 1. ...

  4. nginx在用户使用ie的使用重定向到/nginx-MSIE目录下

    [root@web01 ]# cat /app/server/nginx/conf/rewrite/default.conf #rewrite ^/index\.html /index.php las ...

  5. HUD 2544 最短路 迪杰斯特拉算法

    最短路 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  6. 改变placeholder的样式

    input::-webkit-input-placeholder{ font-size:12px; color:#d2d2d2 }

  7. 0062 Spring MVC的文件上传与下载--MultipartFile--ResponseEntity

    文件上传功能在网页中见的太多了,比如上传照片作为头像.上传Excel文档导入数据等 先写个上传文件的html <!DOCTYPE html> <html> <head&g ...

  8. 在linux下监控文件是否被删除或创建的命令

    You can use auditd and add a rule for that file to be watched: auditctl -w /path/to/that/file -p wa ...

  9. hdu1428(记忆化搜索)

    题意:“他考虑从A区域到B区域仅当存在一条从B到机房的路线比任何一条从A到机房的路线更近(否则可能永远都到不了机房了…”这句话一定要理解清楚.就是说,对于当前位置,如果下一个状态与终点的最短距离大于或 ...

  10. C++中类所占的存储空间

    #include <iostream> using namespace std; class A { int m_a; int get() { return m_a; } virtual ...