Codeforces 932E Team work 【组合计数+斯特林数】
Codeforces 932E Team work
You have a team of N people. For a particular task, you can pick any non-empty subset of people. The cost of having x people for the task is xk.
Output the sum of costs over all non-empty subsets of people.
Input
Only line of input contains two integers N (1 ≤ N ≤ 109) representing total number of people and k (1 ≤ k ≤ 5000).
Output
Output the sum of costs for all non empty subsets modulo 109 + 7.
Examples
input
1 1
output
1
input
3 2
output
24
Note
In the first example, there is only one non-empty subset {1} with cost 11 = 1.
In the second example, there are seven non-empty subsets.
- {1} with cost 12 = 1
- {2} with cost 12 = 1
- {1, 2} with cost 22 = 4
- {3} with cost 12 = 1
- {1, 3} with cost 22 = 4
- {2, 3} with cost 22 = 4
- {1, 2, 3} with cost 32 = 9
The total cost is 1 + 1 + 4 + 1 + 4 + 4 + 9 = 24.

#include<bits/stdc++.h>
using namespace std;
#define N 5010
#define yyf 1000000007
#define LL long long
LL S[N][N],inv[N],C[N],J[N];
LL n,k;
LL fast_pow(LL a,LL b){
LL ans=1;
while(b){
if(b&1)ans=ans*a%yyf;
b>>=1;
a=a*a%yyf;
}
return ans;
}
int main(){
cin>>n>>k;
inv[0]=inv[1]=1;C[1]=n;J[1]=1;
for(LL i=2;i<=k;i++)J[i]=J[i-1]*i%yyf;
for(LL i=2;i<=k;i++)inv[i]=(yyf-yyf/i)*inv[yyf%i]%yyf;
for(LL i=2;i<=k;i++)C[i]=C[i-1]*inv[i]%yyf*(n-i+1)%yyf;
S[0][0]=1;
for(LL i=1;i<=k;i++){
S[i][0]=0;
for(LL j=1;j<=i;j++)S[i][j]=(j*S[i-1][j]%yyf+S[i-1][j-1])%yyf;
}
LL ans=0;
for(LL i=1;i<=min(k,n);i++)ans=(ans+S[k][i]*J[i]%yyf*C[i]%yyf*fast_pow(2,n-i)%yyf)%yyf;
printf("%lld",ans%yyf);
return 0;
}
Codeforces 932E Team work 【组合计数+斯特林数】的更多相关文章
- codeforces 932E Team Work(组合数学、dp)
codeforces 932E Team Work 题意 给定 \(n(1e9)\).\(k(5000)\).求 \(\Sigma_{x=1}^{n}C_n^xx^k\). 题解 解法一 官方题解 的 ...
- CF932E Team Work(第二类斯特林数)
题目 CF932E Team Work 前置:斯特林数\(\Longrightarrow\)点这里 做法 \[\begin{aligned}\\ &\sum\limits_{i=1}^n C_ ...
- Codeforces 932 E Team Work ( 第二类斯特林数、下降阶乘幂、组合数学 )
题目链接 题意 : 其实就是要求 分析 : 先暴力将次方通过第二类斯特林数转化成下降幂 ( 套路?) 然后再一步步化简.使得最外层和 N 有关的 ∑ 划掉 这里有个技巧就是 将组合数的表达式放到一边. ...
- 组合计数 && Stirling数
参考: http://blog.csdn.net/qwb492859377/article/details/50654627 http://blog.csdn.net/acdreamers/artic ...
- 2018.12.14 codeforces 932E. Team Work(组合数学)
传送门 组合数学套路题. 要求ans=∑i=0nCni∗ik,n≤1e9,k≤5000ans=\sum_{i=0}^n C_n^i*i^k,n\le 1e9,k\le 5000ans=∑i=0nCn ...
- Codeforces 932E Team Work 数学
Team Work 发现网上没有我这种写法.. i ^ k我们可以理解为对于每个子集我们k个for套在一起数有多少个. 那么我们问题就变成了 任意可重复位置的k个物品属于多少个子集. 然后我们枚举k个 ...
- CF932E Team Work——第二类斯特林数
题解 n太大,而k比较小,可以O(k^2)做 想方设法争取把有关n的循环变成O(1)的式子 考虑用公式: 来替换i^k 原始的组合数C(n,i)一项,考虑能否和后面的系数分离开来,直接变成2^n处理. ...
- Codeforces 15E Triangles 【组合计数】
Codeforces 15E Triangles Last summer Peter was at his granny's in the country, when a wolf attacked ...
- [CodeForces 300C Beautiful Numbers]组合计数
题意:十进制的每一位仅由a和b组成的数是“X数”,求长度为n,各数位上的数的和是X数的X数的个数 思路:由于总的位数为n,每一位只能是a或b,令a有p个,则b有(n-p)个,如果 a*p+b*(n-p ...
随机推荐
- 关于JBoss的一些项目配置
1. 如何使用 IP:port 的形式访问项目 : [1] 在standalone.xml文件中,查找<interfaces>标签,添加如下节点 : <interface name= ...
- Session存储
session其实分为服务器端Session和客户端Session. 当用户首次与Web服务器建立连接的时候,服务器会给用户分发一个sessionid作为标识.用户每次提交页面,浏览器都会把这个ses ...
- jQuery中兄弟元素、子元素和父元素的获取
我们这里主要总结jQuery中对某元素的兄弟元素.子元素和父元素的获取,原声的Javascript代码对这些元素的获取比较麻烦一些,而jQuery正好对这些方法进行封装,让我们更加方便的对这些元素进行 ...
- Python笔试、面试 【必看】
本文由EarlGrey@编程派独家编译,转载请务必注明作者及出处. 原文:Sheena@codementor 译文:编程派 引言 想找一份Python开发工作吗?那你很可能得证明自己知道如何使用Pyt ...
- Java的 final 关键字
本文主要探讨Java final 关键字修饰变量时的用法. !!!!文末有彩蛋!!!! 1.修饰类 当用final修饰一个类时,表明这个类不能被继承.也就是说,如果一个类你永远不会让他被继承,就可以用 ...
- Oracle 冷备份详解【实战案例】
Oracle 冷备份详解 --准备工作 select * from v$database; select file_name from dba_data_files; create tablespac ...
- 1-23-shell脚本之-if流程控制语句和for循环语句的使用
大纲: 1.逻辑判断 2.if流程控制语句 3.for循环控制语句 ---------------------------------------------- 在开始之前,先了解一下逻辑判断符号 ...
- HDU 1693 插头dp入门详解
放题目链接 https://vjudge.net/problem/22021/origin 给出一个n*m的01矩阵,1可走0不可通过,要求走过的路可以形成一个环且可以有多个环出现,问有多少不同的 ...
- Java读写文化总结
Java读文件 package 天才白痴梦; import java.io.BufferedReader; import java.io.File; import java.io.FileInputS ...
- OLT配置学习
1.console连接跟一般交换机一样,不赘述 2.修改系统名称 Add Hostname/Device Name: huawei(config)#system sys-info descriptio ...