题解

大概就是求证这个

\[\sum_i^nC_{n}^i*C_n^i = C_{2n}^n
\]

证明:

\[(1+x)^{2n} = [C(0,n)+C(1,n)*x+...+C(n,n)*x^n]*[[C(0,n)+C(1,n)*x+...+C(n,n)*x^n]]
\]

\[=...+[C(0,n)*C(n,n)+C(n-1,n)+...+C(n,n)*C(0,n)]x^n+...
\]

也就是说,在\((1+x)^{2n}\)的展开式中,\(x^n\)的系数是

\[\sum_k^nC(k,n)*C(n-k) = \sum_k^nC(k,n)^2
\]

以上,我们证明了范德蒙德卷积

根据二项式定理

\[(1+x)^{2n}=\sum_k^{2n}[C(k,2n)]*x^k$$即$x^k$的系数为C(n,2n),由此可得$\sum_k^nC(k,n)^2 = C(n,2n)$
###代码
```c++
#include<cstdio>
#include<algorithm>
#define LL long long
#define mod 998244353
LL inv(LL x,int y) {
LL ret = 1;
for(;y;y >>= 1,x = x * x % mod)
if(y & 1) ret = ret * x % mod;
return ret;
}
const int maxn = 1000007;
LL jc[maxn * 2];
LL C(int a,int b) {
return ((((jc[a] * inv(jc[b],mod - 2)% mod) + mod) % mod)
* inv(jc[a - b],mod - 2) + mod) % mod;
}
int main() {
jc[0] = jc[1] = 1;
int n;
scanf("%d",&n);
for(int i = 2;i <= 2 * n;++ i)
jc[i] = jc[i - 1] * i % mod;
LL ans = 0;
for(int i = 1;i <= n;++ i)
ans = (ans + C(2 * i,i)) % mod;
printf("%lld\n",ans);
return 0;
}
```\]

Wannafly挑战赛17 B的更多相关文章

  1. Wannafly挑战赛17 A 走格子【矩阵行走/模拟】

    [链接]:A [分析]:可以设置方向数组和标记数组.当不合法(越界/访问过)就转向,转向可以用now=(now+1)%4 [代码]: #include <bits/stdc++.h> #d ...

  2. Wannafly挑战赛25游记

    Wannafly挑战赛25游记 A - 因子 题目大意: 令\(x=n!(n\le10^{12})\),给定一大于\(1\)的正整数\(p(p\le10000)\)求一个\(k\)使得\(p^k|x\ ...

  3. Wannafly挑战赛27

    Wannafly挑战赛27 我打的第一场$Wannafly$是第25场,$T2$竟然出了一个几何题?而且还把我好不容易升上绿的$Rating$又降回了蓝名...之后再不敢打$Wannafly$了. 由 ...

  4. Wannafly 挑战赛 19 参考题解

    这一次的 Wannafly 挑战赛题目是我出的,除了第一题,剩余的题目好像对大部分算法竞赛者来说好像都不是特别友好,但是个人感觉题目质量还是过得去的,下面是题目链接以及题解. [题目链接] Wanna ...

  5. Wannafly挑战赛21A

    题目链接 Wannafly挑战赛21A 题解 代码 #include <cstdio> #include <cmath> #define MAX 1000005 #define ...

  6. Wannafly挑战赛24游记

    Wannafly挑战赛24游记 A - 石子游戏 题目大意: A和B两人玩游戏,总共有\(n(n\le10^4)\)堆石子,轮流进行一些操作,不能进行下去的人则输掉这局游戏.操作包含以下两种: 把石子 ...

  7. Wannafly挑战赛25C 期望操作数

    Wannafly挑战赛25C 期望操作数 简单题啦 \(f[i]=\frac{\sum_{j<=i}f[j]}{i}+1\) \(f[i]=\frac{f[i]}{i}+\frac{\sum_{ ...

  8. Wannafly挑战赛18B 随机数

    Wannafly挑战赛18B 随机数 设\(f_i\)表示生成\(i\)个数有奇数个1的概率. 那么显而易见的递推式:\(f_i=p(1-f_{i-1})+(1-p)f_{i-1}=(1-2p)f_{ ...

  9. Wannafly挑战赛22游记

    Wannafly挑战赛22游记 幸运的人都是相似的,不幸的人各有各的不幸. --题记 A-计数器 题目大意: 有一个计数器,计数器的初始值为\(0\),每次操作你可以把计数器的值加上\(a_1,a_2 ...

随机推荐

  1. JavaScript事件和方法

    单击一个超链接触发事件 1.用a标签的onclick <a href="#" onclick="js代码"> 这种写法呢,存在一种弊端,就是点击后会 ...

  2. 03.WebView演练-iOS开发Demo(示例程序)源代码

    技术博客http://www.cnblogs.com/ChenYilong/   新浪微博http://weibo.com/luohanchenyilong   //转载请注明出处--本文永久链接:h ...

  3. 用create-react-app来快速配置react

    最近在学react,然后感觉自己之前用的express+gulp+webpack+ejs的工作环境还是基于html+js+css这种三层架构的应用,完全跟react不是一回事. 愚蠢的我居然在原先的这 ...

  4. css3背景色过渡

    <!DOCTYPE html><html lang="zh-cmn-Hans"><head><meta charset="utf ...

  5. VS 2010 应用程序无法启动

    其实一般遇到这种问题, 不管是debug还是release, 也不用看提示的内存地址, 首先应该想到库是否包含正确. 一个可能的错误就是32位或64位不匹配的错误. 比如环境变量设的是64位的Open ...

  6. Java错误提示:Syntax error, insert "}" to complete Block

    从网上复制了一段java代码到Eclipse里面,调整了一下格式,把Eclipse提示的明显有问题的地方,主要是空格,删掉了,但还是在最后一个分号那里提示“Syntax error, insert & ...

  7. N-gram语言模型与马尔科夫假设关系(转)

    1.从独立性假设到联合概率链朴素贝叶斯中使用的独立性假设为 P(x1,x2,x3,...,xn)=P(x1)P(x2)P(x3)...P(xn) 去掉独立性假设,有下面这个恒等式,即联合概率链规则 P ...

  8. PyQt: eg2

    #coding:utf-8 from __future__ import division import sys from math import * from PyQt4 import QtCore ...

  9. 查找内容grep命令

    标准unix/linux下的grep通过以下参数控制上下文 grep -C 5 foo file 显示file文件中匹配foo字串那行以及上下5行 grep -B 5 foo file 显示foo及前 ...

  10. java图片转byte转string

    第一种:原始乱码: public static void main(String[] args) throws IOException { File imgFile = new File(" ...