序列期望

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 247    Accepted Submission(s): 119

Problem Description 
“看似随机,实则早已注定”——光羽

度度熊有n个随机变量x1,x2,...,xnx1,x2,...,xn。给定区间[l1,r1],...,[ln,rn][l1,r1],...,[ln,rn],变量xixi的值会等概率成为区间[li,ri][li,ri]中的任意一个整数。

显然这n个随机变量的值会有一共∏ni=1(ri−li+1)∏i=1n(ri−li+1) 种情况,且每种情况出现的概率为∏ni=11ri−li+1∏i=1n1ri−li+1

对于某种情况,令h=maxx1,x2,...,xnh=maxx1,x2,...,xn,定义这种情况的权值为:∏ni=1(h−xi+1)∏i=1n(h−xi+1).

度度熊想知道权值的期望是多少?请将答案对109+7取模后输出。

PS:不清楚期望是啥?为什么不问问神奇的百度呢?

Input 
第一行一个数,表示数据组数T。

每组数据第一行一个整数n;接下来n行,每行两个数,表示li和ri。

数据组数T=100,满足:

−1≤n≤100−1≤n≤100 
−1≤li≤ri≤104−1≤li≤ri≤104

其中70%的数据满足ri≤100。

Output 
每组数据输出一行,每行仅包含一个数,表示期望。

假设答案为pq,请输出p×q−1 mod 109+7,此处q−1为q的逆元。

Sample Input 


2 5 
2 4 
2 5 

1 1 
2 3 
1 1

Sample Output 
875000012 
500000010

Hint

第二组数据的解释:序列只有两种情况(1,2,1)和(1,3,1),权值分别为2*1*2=4和3*1*3=9,答案为(4+9)/2,在模域下为500000010。

 
 概率期望本来就学的好菜aaa!这道题还是挺有意思的。可以暴力枚举每一个最大值M,计算对应做出的贡献。而至少出现了一次M并且M是出现的最大值的概率就是每一段区间出现l[i]-M的贡献减去l[i]-(M-1)的贡献,因为每种情况出现的概率是,我们先把每个M的贡献加起来最后除以每种情况的概率就是答案。
#include<iostream>
#include<cstdio>
#include<algorithm>
#define RG register
#define ll long long
#define mod 1000000007
using namespace std; int n;
ll l[], r[]; inline ll mpow ( ll a, ll b ) {
ll ans = ;
for ( ; b; b >>= , a = a * a % mod )
if ( b & ) ans = ans * a % mod;
return ans;
} int main ( ) {
int T;
scanf ( "%d", &T );
while ( T -- ) {
scanf ( "%d", &n );
ll sum = , MI = , MA = ;
for ( int i = ; i <= n; i ++ ) {
scanf ( "%I64d%I64d", &l[i], &r[i] );
sum = sum * ( r[i] - l[i] + ) % mod;
MI = max( l[i], MI );
MA = max( MA, r[i] );
}
ll ans = ;
for ( RG ll h = MI; h <= MA; h ++ ) {
ll sum1 = , sum2 = ;
for ( RG int i = ; i <= n; i ++ ) {
ll L = l[i], R = min ( h, r[i] );
L = h - L + , R = h - R + ;
sum1 = ( L + R ) * ( L - R + ) / * sum1 % mod;
}
for ( RG int i = ; i <= n; i ++ ) {
ll L = l[i], R = min ( h - , r[i] );
L = h - L + , R = h - R + ;
sum2 = ( L + R ) * ( L - R + ) / * sum2 % mod;
}
ans = ( ans + ( sum1 - sum2 + mod ) % mod ) % mod;
}
ans = ans * mpow( sum, mod - ) % mod;
printf ( "%I64d\n", ans );
}
return ;
}

【HDU】6410:序列期望的更多相关文章

  1. HDU 5984 数学期望

    对长为L的棒子随机取一点分割两部分,抛弃左边一部分,重复过程,直到长度小于d,问操作次数的期望. 区域赛的题,比较基础的概率论,我记得教材上有道很像的题,对1/len积分,$ln(L)-ln(d)+1 ...

  2. HDU 5570 balls 期望 数学

    balls Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5570 De ...

  3. poj 2096 Collecting Bugs && ZOJ 3329 One Person Game && hdu 4035 Maze——期望DP

    poj 2096 题目:http://poj.org/problem?id=2096 f[ i ][ j ] 表示收集了 i 个 n 的那个. j 个 s 的那个的期望步数. #include< ...

  4. hdu 5159 Card (期望)

    Problem Description There are x cards on the desk, they are numbered from 1 to x. The score of the c ...

  5. hdu 5248 序列变换(二分枚举)

    Problem Description 给定序列A={A1,A2,...,An}, 要求改变序列A中的某些元素,形成一个严格单调的序列B(严格单调的定义为:Bi<Bi+,≤i<N). 我们 ...

  6. hdu 5245 Joyful(期望的计算,好题)

    Problem Description Sakura has a very magical tool to paint walls. One day, kAc asked Sakura to pain ...

  7. hdu 5256 序列变换 (LIS变形)

    序列变换 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  8. Maze HDU - 4035(期望dp)

    When wake up, lxhgww find himself in a huge maze. The maze consisted by N rooms and tunnels connecti ...

  9. HDU 6348 序列计数 (树状数组 + DP)

    序列计数 Time Limit: 4500/4000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Subm ...

随机推荐

  1. Daily Report-1126

    今日: 上午主要是回顾了react,阅读官方文档的时候发现了list中key值设计的必要性. 看了部分react源码,发现有些吃力,在询问羽牧学长之后调整策略,从redux和mobx入手,先多熟悉用法 ...

  2. Javascript装饰器的妙用

    最近新开了一个Node项目,采用TypeScript来开发,在数据库及路由管理方面用了不少的装饰器,发觉这的确是一个好东西.装饰器是一个还处于草案中的特性,目前木有直接支持该语法的环境,但是可以通过 ...

  3. python3学习笔记.1.初体验

    最近工作烦得很 就想找点儿别的事情来做,于是想到了学学python. 因为是vs2017,所以就在里面安装了. 第一个程序肯定是Hello World了. 新建一个python应用程序 代码只有一行 ...

  4. BBScan — 一个信息泄漏批量扫描脚本

    github:https://github.com/lijiejie/BBScan 有些朋友手上有几十万甚至上百万个域名,比如,乌云所有厂商的子域名. 如果把这30万个域名全部扔给wvs,APPsca ...

  5. 64_t5

    texlive-mkpattern-svn15878.1.2-33.fc26.2.noarch..> 24-May-2017 15:54 38178 texlive-mkpic-bin-svn3 ...

  6. 005zabbix3.0报错记录

    一.问题描述 在zabbix_server添加变量时,出现了以下的报错,

  7. selenium grid结构图

    调用 Selenium-Grid 的基本结构图如下: 上面是使用 selenium-grid 的一种普通方式,仅仅使用了其支持的分布式执行的功能,即当你同时需 要测试用例比较多时,可以平行的执行这些用 ...

  8. Robust Online Visual Tracking with a Single Convolutional Neural Network

    Abstract:这篇论文有三个贡献,第一提出了新颖的简化的结构损失函数,能保持尽量多的训练样本,通过适应模型输出的不确定性来减少跟踪误差累积风险. 第二是增强了普通的SGD,采用了暂时的选择策略来进 ...

  9. POJ 3026 Borg Maze(Prim+bfs求各点间距离)

    题目链接:http://poj.org/problem?id=3026 题目大意:在一个y行 x列的迷宫中,有可行走的通路空格’  ‘,不可行走的墙’#’,还有两种英文字母A和S,现在从S出发,要求用 ...

  10. 简易代理服务器之python实现

    代理服务器是在client和server之间的一个服务器,一般起到缓存的作用,所以也叫缓存服务器.比如: A ----(HTTP)----> B ----(HTTP)----> C 其中A ...