多校A层冲刺NOIP2024模拟赛08 排列

一种连续段 dp 的解法。

题面

小 Y 最近在研究组合数学,他学会了如何枚举排列。

小 Z 最近在研究数论,他学会了求最大公约数。

于是小 Y 和小 Z 联手出了一个有趣的题目:

有多少个长度为 \(n\) 且任意相邻两个数的最大公约数都不为 \(k\) 的排列?

然而他们并不会做这个题,所以请你来帮帮他们吧!

思路

设 \(dp[i][j]\) 为插入了 \(1\sim i\),形成了 \(j\) 个连续段,且合法的情况。

强制让两两间 \(gcd\) 为 \(k\) 的数划分到不同的段,这样在最终的排列中 \(gcd\) 为 \(k\) 的数一定不会相邻。

接着发现只有 \(k\) 的倍数的 \(gcd\) 有可能为 \(k\)。

故把 \(k\) 的倍数进行全排列,在排列的基础上划分段,若在排列中两两间的 \(gcd\) 为 \(k\) 则强制划分为两段,否则可划分可不划分,并将划分成 \(j\) 段的方案数加至 \(dp[0][j]\) 中。

然后之间进行朴素的连续段 dp 即可。

CODE

// ubsan: undefined
// accoders
#include<bits/stdc++.h>
using namespace std; #define ll long long
#define mod 998244353 const int maxn=3005; int n,k,m;
int p[15],gcd[15][15]; ll dp[maxn][maxn],fac[20],inv[20]; bool vis[15]; inline ll ksm(ll x,ll y)
{
ll sum=1;
for(;y;y/=2,x=x*x%mod) if(y&1) sum=sum*x%mod;
return sum;
}
inline void init()
{
fac[0]=1;
for(int i=1;i<=15;i++) fac[i]=fac[i-1]*i%mod;
inv[15]=ksm(fac[15],mod-2);
for(int i=14;~i;i--) inv[i]=inv[i+1]*(i+1)%mod;
for(int i=1;i<=10;i++) for(int j=1;j<=10;j++) gcd[i][j]=__gcd(i,j);
}
inline ll C(int n,int m)
{
if(n<m) return 0;
return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
inline void dfs(int x)
{
if(x>m)
{
int cnt=0;
for(int i=1;i<m;i++)
if(gcd[p[i]][p[i+1]]==1) cnt++;
for(int i=cnt+1,j=0;i<=m;i++,j++) dp[0][i]=(dp[0][i]+C(m-cnt-1,j))%mod;
return ;
}
for(int i=1;i<=m;i++)
{
if(vis[i]) continue;
vis[i]=true;p[x]=i;
dfs(x+1);
vis[i]=false;p[x]=0;
}
} int main()
{
freopen("permutation.in","r",stdin);
freopen("permutation.out","w",stdout);
scanf("%d%d",&n,&k);
init();
m=n/k;
dfs(1);
for(int i=1;i<=n;i++)
{
if(i%k==0)
{
for(int j=1;j<=n;j++) dp[i][j]=dp[i-1][j];
}
else
{
for(int j=1;j<=n;j++)
{
dp[i][j]=dp[i-1][j+1]*j%mod+dp[i-1][j]*2*j%mod+dp[i-1][j-1]*j%mod;
dp[i][j]%=mod;
}
}
}
printf("%lld",dp[n][1]);
}

多校A层冲刺NOIP2024模拟赛08 排列的更多相关文章

  1. 多校B层冲刺NOIP20211111模拟12

    题面:PDFhttp://xn--gwt928b.accoders.com/pdf/10248/10248.pdfhttp://xn--gwt928b.accoders.com/pdf/10248/1 ...

  2. 【CJOJ P1957】【NOIP2010冲刺十模拟赛】数字积木

    [NOIP2010冲刺十模拟赛]数字积木 Description 小明有一款新式积木,每个积木上都有一个数,一天小明突发奇想,要是把所有的积木排成一排,所形成的数目最大是多少呢? 你的任务就是读入n个 ...

  3. 冲刺Noip2017模拟赛7 解题报告——五十岚芒果酱

    1.二叉树(binary) .二叉树 (binary.cpp/c/pas) [问题描述] 二叉排序树或者是一棵空树,或者是具有下列性质的二叉树: ()若左子树不空,则左子树上所有结点的值均小于它的根结 ...

  4. 冲刺Noip2017模拟赛8 解题报告——五十岚芒果酱

    1.鼎纹 [问题描述] 据说鼎纹的 种制造 式是 铜模印出来的,这是我国古代劳动 智慧 的结晶.铜模印过的地 ,会留下深深的印记,经过时间的炼化,洗 练成历史的遗存. 聪明的古代劳动人民拥有一个 a ...

  5. 冲刺Noip2017模拟赛4 解题报告——五十岚芒果酱

    题1 韬韬抢苹果(apple) [问题描述] 又到了收获的季节,树上结了许多韬韬,错了,是许多苹果,有很多个小韬韬都来摘苹 果.每个韬韬都想要最大的苹果,所以发生了争执,为了解决他们的矛盾,出题人定了 ...

  6. 冲刺Noip2017模拟赛2 解题报告——五十岚芒果酱

    题1 牛跑步(running) [题目描述] 新牛到部队,CG 要求它们每天早上搞晨跑,从 A 农场跑到 B 农场.从 A 农场到 B 农场中有 n- 个路口,分别标上号,A 农场为 号,B 农场为 ...

  7. 冲刺Noip2017模拟赛1 解题报告——五十岚芒果酱

    题1 国际象棋(chess) [问题描述] 有N个人要参加国际象棋比赛,该比赛要进行K场对弈.每个人最多参加2场对弈,最少参加0场对弈.每个人都有一个与其他人都不相同的等级(用一个正整数来表示).在对 ...

  8. 冲刺Noip2017模拟赛6 解题报告——五十岚芒果酱

    1.ksum(ksum) [问题描述] Peter喜欢玩数组.NOIP这天,他从Jason手里得到了大小为n的一个正整数 数组. Peter求出了这个数组的所有子段和,并将这n(n+)/2个数降序排序 ...

  9. 冲刺Noip2017模拟赛5 解题报告——五十岚芒果酱

    1. 公约数(gcd) [问题描述] 给定一个正整数,在[,n]的范围内,求出有多少个无序数对(a,b)满足 gcd(a,b)=a xor b. [输入格式] 输入共一行,一个正整数n. [输出格式] ...

  10. 冲刺Noip2017模拟赛3 解题报告——五十岚芒果酱

    题1  素数 [问题描述] 给定一个正整数N,询问1到N中有多少个素数. [输入格式]primenum.in 一个正整数N. [输出格式]primenum.out 一个数Ans,表示1到N中有多少个素 ...

随机推荐

  1. SpringBoot多环境日志配置

    SpringBoot多环境日志配置 SpringBoot 默认使用 LogBack 日志系统 默认情况下,SpringBoot项目的日志只会在控制台输入. 如果想查询历史日志则无法找到,我们需要一个日 ...

  2. 【Git代码仓库】之合并分支代码操作到主干代码上(界面版/命令版)

    一.代码管理仓库,合并分支代码到主干(界面版*) 1.从远程Git代码仓库克隆到本地 # Git克隆 git clone git@e.coding.net:XXX/SQM/SC_WEB_Project ...

  3. C语言三子棋

    话说自从大一学C语言后用C语言的巅峰也就是第十二届蓝桥杯了,后续开发什么的都是用的java,搞开发java这样的面向对象语言确实用着更顺手方便点.不过C语言YYDS,"C生万物"嘛 ...

  4. 8.30域横向-PTH&PTK&PTT票据传递

    知识点 Kerberos协议具体工作方法,在域中: 客户机将明文密码进行NTLM哈希,然后和时间戳一起加密(使用krbtgt密码hash作为密钥),发送给kdc(域控),kdc对用户进行检测,成功之后 ...

  5. HTML – HTML Tags & Semantic HTML 语义化 HTML

    前言 HTML tag 有 100 多个, 有些是功能形的, 非用不可, 有些是为了语义化对 screen reader 友好 (给眼睛有残缺的人也可以获取清晰的网站信息). 语义化是很重要的, 有些 ...

  6. QT原理与源码分析之QT反射机制原理

    QT反射机制原理 本文将介绍QT反射机制创建QT对象实例的原理和流程以及源代码. 文章目录 QT反射机制创建QT对象实例 原理 流程 源码 QT反射机制创建QT对象实例 QT框架提供的基于元对象的反射 ...

  7. Kubernetes集群证书过期解决办法

    问题现象 K8S集群证书过期后,会导无法创建Pod,通过kubectl get nodes也无法获取信息,甚至dashboard也无法访问. 一.确认K8S证书过期时间 查看k8s某一证书过期时间: ...

  8. 修改Kubernetes主节点(控制节点)名称

    1.修改物理机主机名 hostnamectl set-hostname <hostname> 2.修改 /etc/kubernetes/manifests 目录下的文件,将文件内容包含旧主 ...

  9. Android复习(二)应用资源——>可绘制对象资源

    可绘制对象资源是图形的一般概念,是指可在屏幕上绘制的图形,以及可使用 getDrawable(int) 等 API 检索,或应用到拥有 android:drawable 和 android:icon  ...

  10. Blazor 调用 Clipboard API 读写剪贴板数据

    目录 简介 使用JS互操作 使用ClipLazor库 创建项目 使用方法 简单测试 参考链接 简介 Clipboard API 是一种允许网页读取剪贴板数据或向其中写入数据的API,主要有两个方法: ...