D. Choosing Capital for Treeland
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The country Treeland consists of n cities, some pairs of them are connected with unidirectional roads. Overall there are n - 1 roads in the country. We know that if we don't take the direction of the roads into consideration, we can get from any city to any other one.

The council of the elders has recently decided to choose the capital of Treeland. Of course it should be a city of this country. The council is supposed to meet in the capital and regularly move from the capital to other cities (at this stage nobody is thinking about getting back to the capital from these cities). For that reason if city a is chosen a capital, then all roads must be oriented so that if we move along them, we can get from city a to any other city. For that some roads may have to be inversed.

Help the elders to choose the capital so that they have to inverse the minimum number of roads in the country.

Input

The first input line contains integer n (2 ≤ n ≤ 2·105) — the number of cities in Treeland. Next n - 1 lines contain the descriptions of the roads, one road per line. A road is described by a pair of integers si, ti (1 ≤ si, ti ≤ nsi ≠ ti) — the numbers of cities, connected by that road. The i-th road is oriented from city si to city ti. You can consider cities in Treeland indexed from 1 to n.

Output

In the first line print the minimum number of roads to be inversed if the capital is chosen optimally. In the second line print all possible ways to choose the capital — a sequence of indexes of cities in the increasing order.

Examples
input
3
2 1
2 3
output
0
2
input
4
1 4
2 4
3 4
output
2
1 2 3

巧妙的转换,正向边权0,逆向边权1

两遍dfs分别求f[i]到子节点的边权和 和 g[i]从i往上的边权和

注意把ans=min(ans,f[u]+g[u]);写在dfs开始处,否则处理不了1最小的时候

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=2e5+,INF=1e9+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,u,v;
struct edge{
int v,w,ne;
}e[N<<];
int cnt=,h[N];
inline void ins(int u,int v){
cnt++;
e[cnt].v=v;e[cnt].w=;e[cnt].ne=h[u];h[u]=cnt;
cnt++;
e[cnt].v=u;e[cnt].w=;e[cnt].ne=h[v];h[v]=cnt;
}
int f[N];
void dfs1(int u,int fa){
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v,w=e[i].w;
if(v==fa) continue;
dfs1(v,u);
f[u]+=f[v]+w;
}
}
int g[N],ans=INF;
void dfs2(int u,int fa){//printf("u %d %d %d\n",u,f[u],g[u]);
ans=min(ans,f[u]+g[u]);
for(int i=h[u];i;i=e[i].ne){
int v=e[i].v,w=e[i].w;
if(v==fa) continue;
g[v]=g[u]+f[u]-f[v]+(w==?:-);
dfs2(v,u);
}
}
int main(){
n=read();
for(int i=;i<=n-;i++){u=read();v=read();ins(u,v);}
dfs1(,);
dfs2(,);
printf("%d\n",ans);
for(int i=;i<=n;i++) if(g[i]+f[i]==ans) printf("%d ",i);
}

CF219D. Choosing Capital for Treeland [树形DP]的更多相关文章

  1. CF#135 D. Choosing Capital for Treeland 树形DP

    D. Choosing Capital for Treeland 题意 给出一颗有方向的n个节点的树,现在要选择一个点作为首都. 问最少需要翻转多少条边,使得首都可以到所有其他的城市去,以及相应的首都 ...

  2. CF 219D Choosing Capital for Treeland 树形DP 好题

    一个国家,有n座城市,编号为1~n,有n-1条有向边 如果不考虑边的有向性,这n个城市刚好构成一棵树 现在国王要在这n个城市中选择一个作为首都 要求:从首都可以到达这个国家的任何一个城市(边是有向的) ...

  3. Codeforces 219D - Choosing Capital for Treeland(树形dp)

    http://codeforces.com/problemset/problem/219/D 题意 给一颗树但边是单向边,求至少旋转多少条单向边的方向,可以使得树上有一点可以到达树上任意一点,若有多个 ...

  4. [codeforces219D]Choosing Capital for Treeland树形dp

    题意:给出一棵树,带有向边,找出某个点到达所有点需要反转的最少的边. 解题关键:和求树的直径的思路差不多,将求(父树-子树)的最大值改为求特定值.依然是两次dfs,套路解法. 对树形dp的理解:树形d ...

  5. CodeForces 219D Choosing Capital for Treeland (树形DP)经典

    <题目链接> 题目大意: 给定一个有向树,现在要你从这颗树上选一个点,使得从这个点出发,到达树上其它所有点所需翻转的边数最小,输出最少需要翻转的边数,并且将这些符合条件的点输出. 解题分析 ...

  6. CF219D Choosing Capital for Treeland

    嘟嘟嘟 树形dp. 首先一个很常规的想法就是如果u到v有一条边,那么建立cost(u, v) = 0, cost(v, u) = 1的两条边. 可以两遍dfs. 先任选一个点作为根节点,第一遍从下往上 ...

  7. Codeforces 219D. Choosing Capital for Treeland (树dp)

    题目链接:http://codeforces.com/contest/219/problem/D 树dp //#pragma comment(linker, "/STACK:10240000 ...

  8. CF 219 D:Choosing Capital for Treeland(树形dp)

    D. Choosing Capital for Treeland 链接:http://codeforces.com/problemset/problem/219/D   The country Tre ...

  9. 树形DP Codeforces Round #135 (Div. 2) D. Choosing Capital for Treeland

    题目传送门 /* 题意:求一个点为根节点,使得到其他所有点的距离最短,是有向边,反向的距离+1 树形DP:首先假设1为根节点,自下而上计算dp[1](根节点到其他点的距离),然后再从1开始,自上而下计 ...

随机推荐

  1. C#的变迁史 - C# 4.0 之线程安全集合篇

    作为多线程和并行计算不得不考虑的问题就是临界资源的访问问题,解决临界资源的访问通常是加锁或者是使用信号量,这个大家应该很熟悉了. 而集合作为一种重要的临界资源,通用性更广,为了让大家更安全的使用它们, ...

  2. angularjs SyntaxError: Unexpected token  in JSON at position 0

    使用NodeJs读取json格式的文件,转换成对象时报错 :SyntaxError: Unexpected token in JSON at position 0,这个问题查了两三个小时,记录一下解决 ...

  3. PHP学习资料下载

    yii2教程以及手册 https://yunpan.cn/ckkhbccyqGVYg (提取码:09b8) mysql学习 链接: http://pan.baidu.com/s/1kUTC8tT 密码 ...

  4. 能力素质模型咨询工具(Part1)

          之前写过由企业家基本素质想到的文章,里面提及一些能力与素质,以下有内容也可以参考: 领导职位 表6-1 远见卓识的行为表现 级 别 行 为 表 现 A (1)关注行业的前景和环境的变化, ...

  5. Bootstrap之样式风格与下拉菜单

    背景颜色 bg-primary 字体颜色 text-primary 文字居中 text-center 按钮 btn btn-primary btn-default默认 btn-link链接 按钮大小 ...

  6. UIPickerView的使用(二)

    上篇文章 UIPickerView的使用(一)学习了如何创建单列选择器,现在看一下如何创建多列选择器 多列选择器(以二列为例) 1.遵守协议和创建两个数据源 2.创建pickView 3.实现代理 / ...

  7. sharepoint2013的审核日志的时间区域设置

    最近在项目中碰到审核日志的时间为GMT格式 ,如何格式化成本地时间. 网站集设置成本地区域无法解决此类问题,后来查询资料才知道.无法更改 Change Audit Time From GMT Time ...

  8. Android—基于Socket与上传图片到客户端

    最近项目中需要客户端和Socket互相传递数据时候需要相互传递图片所以做下总结以免以后忘记,也希望给大家带来帮助. 先上客户端的代码: 根据图片名称上传照相机中单个照片(此方法为自己封装) 参数所代表 ...

  9. mvp+retrofit+rxjava

    引用 "retrofit" : "com.squareup.retrofit2:retrofit:2.0.1", "retrofit-adapter& ...

  10. iOS 常用三方类库整理

    iOS 常用三方类库整理 1:基于响应式编程思想的oc 地址:https://github.com/ReactiveCocoa/ReactiveCocoa 2:hud提示框 地址:https://gi ...