1. QPS


QPS Queries Per Second 是每秒查询率 ,是一台服务器每秒能够相应的查询次数,是对一个特定的查询服务器在规定时间内所处理流量多少的衡量标准, 即每秒的响应请求数,也即是最大吞吐能力。

2. TPS


TPS Transactions Per Second 也就是事务数/秒。一个事务是指一个客户机向服务器发送请求然后服务器做出反应的过程。客户机在发送请求时开始计时,收到服务器响应后结束计时,以此来计算使用的时间和完成的事务个数。

3. QPS和TPS区别


(1) Tps即每秒处理事务数,包括了

  • 用户请求服务器
  • 服务器自己的内部处理
  • 服务器返回给用户

这三个过程,每秒能够完成N个这三个过程,Tps也就是N;

(2) Qps基本类似于Tps,但是不同的是,对于一个页面的一次访问,形成一个Tps;但一次页面请求,可能产生多次对服务器的请求,服务器对这些请求,就可计入“Qps”之中。

例如:访问一个页面会请求服务器3次,一次放,产生一个“T”,产生3个“Q”

一个大胃王一秒能吃10个包子,一个女孩子0.1秒能吃1个包子,那么他们是不是一样的呢?答案是否定的,因为这个女孩子不可能在一秒钟吃下10个包子,她可能要吃很久。这个时候这个大胃王就相当于TPS,而这个女孩子则是QPS。虽然很相似,但其实是不同的。

4. 并发数


并发数(并发度):指系统同时能处理的请求数量,同样反应了系统的负载能力。这个数值可以分析机器1s内的访问日志数量来得到。

5. 吐吞量


吞吐量是指系统在单位时间内处理请求的数量,TPS、QPS都是吞吐量的常用量化指标。

(1) 系统吞吐量要素

一个系统的吞吐量(承压能力)与request(请求)对cpu的消耗,外部接口,IO等等紧密关联。

单个request 对cpu消耗越高,外部系统接口,IO影响速度越慢,系统吞吐能力越低,反之越高。

(2) 重要参数

QPS(TPS),并发数,响应时间

  • QPS(TPS):每秒钟request/事务 数量
  • 并发数:系统同时处理的request/事务数
  • 响应时间:一般取平均响应时间

(3) 关系

QPS(TPS)=并发数/平均响应时间

一个系统吞吐量通常有QPS(TPS),并发数两个因素决定,每套系统这个两个值都有一个相对极限值,在应用场景访问压力下,只要某一项达到系统最高值,系统吞吐量就上不去了,如果压力继续增大,系统的吞吐量反而会下降,原因是系统超负荷工作,上下文切换,内存等等其他消耗导致系统性能下降。

6. PV


PV(Page View):页面访问量,即页面浏览量或点击量,用户每次刷新即被计算一次。可以统计服务一天的访问日志得到。

7. UV


UV(Unique Visitor):独立访客,统计1天内访问某站点的用户数。可以统计服务一天的访问日志并根据用户的唯一标识去重得到。响应时间(RT):响应时间是指系统对请求作出响应的时间,一般取平均响应时间。可以通过Nginx、Apache之类的Web Server得到。

8. DAU


DAU(Daily Active User),日活跃用户数量。常用于反映网站、互联网应用或网络游戏的运营情况。DAU通常统计一日(统计日)之内,登录或使用了某个产品的用户数(去除重复登录的用户),与UV概念相似 。

9. MAU


MAU(Month Active User):月活跃用户数量,指网站、app等去重后的月活跃用户数量 。

10. 系统吞吐量评估


我们在做系统设计的时候就需要考虑CPU运算,IO,外部系统响应因素造成的影响以及对系统性能的初步预估。

而通常情况下,我们面对需求,我们评估出来的出来QPS,并发数之外,还有另外一个维度:日pv。

通过观察系统的访问日志发现,在用户量很大的情况下,各个时间周期内的同一时间段的访问流量几乎一样。比如工作日的每天早上。只要能拿到日流量图和QPS我们就可以推算日流量。

通常的技术方法:

1、找出系统的最高TPS和日PV,这两个要素有相对比较稳定的关系(除了放假、季节性因素影响之外)

2、通过压力测试或者经验预估,得出最高TPS,然后跟进1的关系,计算出系统最高的日吞吐量。B2B中文和淘宝面对的客户群不一样,这两个客户群的网络行为不应用,他们之间的TPS和PV关系比例也不一样。

11. 软件性能测试的基本概念和计算公式


软件做性能测试时需要关注哪些性能呢?

首先,开发软件的目的是为了让用户使用,我们先站在用户的角度分析一下,用户需要关注哪些性能。

对于用户来说,当点击一个按钮、链接或发出一条指令开始,到系统把结果已用户感知的形式展现出来为止,这个过程所消耗的时间是用户对这个软件性能的直观印 象。也就是我们所说的响应时间,当相应时间较小时,用户体验是很好的,当然用户体验的响应时间包括个人主观因素和客观响应时间,在设计软件时,我们就需要 考虑到如何更好地结合这两部分达到用户最佳的体验。如:用户在大数据量查询时,我们可以将先提取出来的数据展示给用户,在用户看的过程中继续进行数据检 索,这时用户并不知道我们后台在做什么。

用户关注的是用户操作的相应时间。

其次,我们站在管理员的角度考虑需要关注的性能点。

1、 响应时间

2、 服务器资源使用情况是否合理

3、 应用服务器和数据库资源使用是否合理

4、 系统能否实现扩展

5、 系统最多支持多少用户访问、系统最大业务处理量是多少

6、 系统性能可能存在的瓶颈在哪里

7、 更换那些设备可以提高性能

8、 系统能否支持7×24小时的业务访问

再次,站在开发(设计)人员角度去考虑。

1、 架构设计是否合理

2、 数据库设计是否合理

3、 代码是否存在性能方面的问题

4、 系统中是否有不合理的内存使用方式

5、 系统中是否存在不合理的线程同步方式

6、 系统中是否存在不合理的资源竞争

12. 软件性能的几个主要术语


1)响应时间:对请求作出响应所需要的时间:

网络传输时间:N1+N2+N3+N4

应用服务器处理时间:A1+A3

数据库服务器处理时间:A2

响应时间=N1+N2+N3+N4+A1+A3+A2

2)并发用户数的计算公式:

系统用户数:系统额定的用户数量,如一个OA系统,可能使用该系统的用户总数是5000个,那么这个数量,就是系统用户数。

同时在线用户数:在一定的时间范围内,最大的同时在线用户数量。

同时在线用户数=每秒请求数RPS(吞吐量)+并发连接数+平均用户思考时间

平均并发用户数的计算:C=nL / T

其中C是平均的并发用户数,n是平均每天访问用户数(login session),L是一天内用户从登录到退出的平均时间(login session的平均时间),T是考察时间长度(一天内多长时间有用户使用系统)

并发用户数峰值计算:C^约等于C + 3*根号C

其中C^是并发用户峰值,C是平均并发用户数,该公式遵循泊松分布理论。

3)吞吐量的计算公式:

指单位时间内系统处理用户的请求数

从业务角度看,吞吐量可以用:请求数/秒、页面数/秒、人数/天或处理业务数/小时等单位来衡量

从网络角度看,吞吐量可以用:字节/秒来衡量

对于交互式应用来说,吞吐量指标反映的是服务器承受的压力,他能够说明系统的负载能力

以不同方式表达的吞吐量可以说明不同层次的问题,例如,以字节数/秒方式可以表示数要受网络基础设施、服务器架构、应用服务器制约等方面的瓶颈;已请求数/秒的方式表示主要是受应用服务器和应用代码的制约体现出的瓶颈。

当没有遇到性能瓶颈的时候,吞吐量与虚拟用户数之间存在一定的联系,可以采用以下公式计算:F=VU * R /

其中F为吞吐量,VU表示虚拟用户个数,R表示每个虚拟用户发出的请求数,T表示性能测试所用的时间

4)性能计数器:

是描述服务器或操作系统性能的一些数据指标,如使用内存数、进程时间,在性能测试中发挥着“监控和分析”的作用,尤其是在分析统统可扩展性、进行新能瓶颈定位时有着非常关键的作用。

资源利用率:指系统各种资源的使用情况,如cpu占用率为68%,内存占用率为55%,一般使用“资源实际使用/总的资源可用量”形成资源利用率。

5)思考时间的计算公式:

Think Time,从业务角度来看,这个时间指用户进行操作时每个请求之间的时间间隔,而在做新能测试时,为了模拟这样的时间间隔,引入了思考时间这个概念,来更加真实的模拟用户的操作。

在吞吐量这个公式中F=VU * R / T说明吞吐量F是VU数量、每个用户发出的请求数R和时间T的函数,而其中的R又可以用时间T和用户思考时间TS来计算:R = T / TS

下面给出一个计算思考时间的一般步骤:

A、首先计算出系统的并发用户数

C=nL / T F=R×C

B、统计出系统平均的吞吐量

F=VU * R / T R×C = VU * R / T

C、统计出平均每个用户发出的请求数量

R=uCT/VU

D、根据公式计算出思考时间

TS=T/R

h1, h2, h3 { color: rgba(0, 119, 187, 1) }

简述 QPS、TPS、并发用户数、吞吐量关系的更多相关文章

  1. 阿里云云盾抗下全球最大DDoS攻击(5亿次请求,95万QPS HTTPS CC攻击) ,阿里百万级QPS资源调度系统,一般的服务器qps多少? QPS/TPS/并发量/系统吞吐量

    阿里云云盾抗下全球最大DDoS攻击(5亿次请求,95万QPS HTTPS CC攻击) 作者:用户 来源:互联网 时间:2016-03-30 13:32:40 安全流量事件https互联网资源 摘要:  ...

  2. 聊聊QPS/TPS/并发量/系统吞吐量的概念

    原文:聊聊QPS/TPS/并发量/系统吞吐量的概念 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/cainiao_user/article/deta ...

  3. QPS/TPS/并发量/系统吞吐量概念和公式

    1.概念 我们在日常工作中经常会听到QPS/TPS这些名词,也会经常被别人问起说你的系统吞吐量有多大.一个系统的吞度量(承压能力)与request对CPU的消耗.外部接口.IO等等紧密关联,单个req ...

  4. QPS/TPS/并发量/系统吞吐量的概念

    我们在日常工作中经常会听到QPS/TPS这些名词,也会经常被别人问起说你的系统吞吐量有多大.这个问题从业务上来讲,可以理解为应用系统每秒钟最大能接受的用户访问量.或者每秒钟最大能处理的请求数: QPS ...

  5. 已知目标qps跟并发用户数20,压测平均响应时间实例

    Jmeter性能测试案例(一) 转:https://blog.csdn.net/lovesoo/article/details/78579547 测试需求:测试20个用户访问网站在负载达到30QPS时 ...

  6. QPS、TPS、并发用户数、吞吐量关系

    1.QPS QPS Queries Per Second  是每秒查询率 ,是一台服务器每秒能够相应的查询次数,是对一个特定的查询服务器在规定时间内所处理流量多少的衡量标准, 即每秒的响应请求数,也即 ...

  7. QPS、TPS、并发用户数、吞吐量

    1.QPS QPS Queries Per Second 是每秒查询率 ,是一台服务器 每秒能够相应的查询次数,是对一个特定的查询服务器在规定时间内 所处理流量多少的衡量标准, 即每秒的响应请求数,也 ...

  8. 并发用户数与 TPS 之间的关系

    1.  背景 在做性能测试的时候,很多人都用并发用户数来衡量系统的性能,觉得系统能支撑的并发用户数越多,系统的性能就越好:对TPS不是非常理解,也根本不知道它们之间的关系,因此非常有必要进行解释. 2 ...

  9. 并发用户数与TPS之间的关系

    1.  背景 在做性能测试的时候,很多人都用并发用户数来衡量系统的性能,觉得系统能支撑的并发用户数越多,系统的性能就越好:对TPS不是非常理解,也根本不知道它们之间的关系,因此非常有必要进行解释. 2 ...

随机推荐

  1. 论如何学习Extjs

    可能现在学习Extjs相比于Vue,在网上的资料要少很多,不过一些旧的视频还是可以帮助你们了解到Extjs是怎么回事. 这里讲一下自己是如何开始学习Extjs语言的: 1.先从Ext的中文文档中学习怎 ...

  2. LevelDb 101学习

    转自http://www.cnblogs.com/haippy/archive/2011/12/04/2276064.html LevelDb日知录之一:LevelDb 101 说起LevelDb也许 ...

  3. Thread、ThreadLocal源码解析

    今天来看一下Thread和ThreadLocal类的源码. 一.Thread (1)首先看一下线程的构造方法,之后会说每种参数的用法,而所有的构造函数都会指向init方法 //空构造创建一个线程 Th ...

  4. 现在有T1、T2、T3三个线程,你怎样保证T2在T1执行完后执行,T3在T2执行完后执行?

    Thread t1 = new Thread(new T1()); Thread t2 = new Thread(new T2()); Thread t3 = new Thread(new T3()) ...

  5. java学习从“菜鸟”到“放弃”

    今天学到java的对象和类中, 由于刚考完c++面向对象与程序设计这门课,对于c++中的类掌握自认为不错,就开始过渡到java. 今天面对的问题,在书写一个类的时候,发现了许多与c++不同的地方. 比 ...

  6. 记一次磁盘UUID不能识别故障处理

    早上zabbix报警,磁盘满了,登录服务器查看信息,一顿操作,突然发现最后lvextend命令不能扩容,查看LVM信息 报错信息"Couldn't find device with uuid ...

  7. 2020DASCTF八月浪漫七夕战

    安恒大学 注入点在邮箱注册那里,无法复现了,提一下 ezflask 源代码 #!/usr/bin/env python # -*- coding: utf-8 -*- from flask impor ...

  8. PostgreSQL数组类型应用

    在使用 awk 脚本:数组是一大利器:在很多场景是用数组能处理. 在 python 中,数据类型list:相当于array类型. 在 Oracle 中,对 array 不够友好,感觉像是鸡肋.但是在 ...

  9. Quartz.NET集成UI版

    Quartz.NET Quartz.NET是NET的开源作业调度系统. Quartz.NET是一个功能齐全的开源作业调度系统,可用于从最小的应用程序到大型企业系统. Quartz.NET目前支持NET ...

  10. Go-注释

    什么是注释? 注释是给开发人员看的,目的是降低开发人员阅读代码的时间成本和代码阅读困难程度 Go-注释内容 1. 包注释,位于某个包下Go程序文件的顶部 2. 函数注释,位于Go函数的头部 3. 代码 ...