HTTP 1.0的优化策略非常简单,就一句话:升级到HTTP 1.1。完了!

改进HTTP的性能是HTTP 1.1工作组的一个重要目标,后来这个版本也引入了大量增强性能的重要特性,其中一些大家比较熟知的有:

  • 持久化连接以支持连接重用;

  • 分块传输编码以支持流式响应;

  • 请求管道以支持并行请求处理;

  • 字节服务以支持基于范围的资源请求; 

  • 改进的更好的缓存机制。

当然,这些只是其中一部分,要全面讨论HTTP 1.1的所有增强特性,非得用一本书不可。同样,推荐大家买一本《HTTP权威指南》(David Gourley和Brian Totty合著)放在手边。另外,提到好的参考书,Steve Souder的《高性能网站建设指南》中概括了14条规则,有一半针对网络优化:

减少DNS查询

每次域名解析都需要一次网络往返,增加请求的延迟,在查询期间会阻塞请求。

减少HTTP请求

任何请求都不如没有请求更快,因此要去掉页面上没有必要的资源。

使用CDN

从地理上把数据放到接近客户端的地方,可以显著减少每次TCP连接的网络延迟,增加吞吐量。

添加Expires首部并配置ETag标签

相关资源应该缓存,以避免重复请求每个页面中相同的资源。Expires首部可用于指定缓存时间,在这个时间内可以直接从缓存取得资源,完全避免HTTP请求。ETag及Last-Modified首部提供了一个与缓存相关的机制,相当于最后一次更新的指纹或时间戳。

Gzip资源

所有文本资源都应该使用Gzip压缩,然后再在客户端与服务器间传输。一般来说,Gzip可以减少 60%~80% 的文件大小,也是一个相对简单(只要在服务器上配置一个选项),但优化效果较好的举措。

避免HTTP重定向

HTTP重定向极其耗时,特别是把客户端定向到一个完全不同的域名的情况下,还会导致额外的DNS查询、TCP连接延迟,等等。

上面每一条建议都经受了时间检验,无论是该书出版的2007年还是今天,都是适用的。这并不是巧合,而是因为所有这些建议都反映了两个根本方面:消除和减少不必要的网络延迟,把传输的字节数降到最少。这两个根本问题永远是优化的核心,对任何应用都有效。

可是,对所有HTTP 1.1的特性和最佳实践,我们就不能这么说了。因为有些HTTP 1.1特性,比如请求管道,由于缺乏支持而流产,而其他协议限制,比如队首响应阻塞,则导致了更多问题。为此,Web开发社区(一直都最有创造性),创造和推行了很多自造的优化手段:域名分区、连接文件、拼合图标、嵌入代码,等等,不下数十种。

对多数Web开发者而言,所有这些都是切实可行的优化手段:熟悉、必要,而且通用。可是,现实当中,我们应该对这些技术有正确的认识:它们都是些针对当前HTTP 1.1协议的局限性而采用的权宜之计。我们本来不应该操心去连接文件、拼合图标、分割域名或嵌入资源。但遗憾的是,“不应该”并不是务实的态度:这些优化手段之所以存在,都是有原因的,在背后的问题被HTTP的下一个版本解决之前,必须得依靠它们。

持久连接的优点

HTTP 1.1的一个主要改进就是引入了持久HTTP连接 。现在我们再演示一下为什么这个特性对我们的优化策略如此重要。

为简单起见,我们限定最多只有一个TCP连接,并且只取得两个小文件(每个<4 KB):一个HTML文档,一个CSS文件,服务器响应需要不同的时间(分别为40 ms和20 ms)。

假设从纽约到伦敦的单向光纤延迟都是28 ms

每个TCP连接开始都有三次握手,要经历一次客户端与服务器间完整的往返。此后,会因为HTTP请求和响应的两次通信而至少引发另一次往返。最后,还要加上服务器处理时间,才能得到每次请求的总时间。

服务器处理时间无法预测,因为这个时间因资源和后端硬件而异。不过,这里的重点其实是由一个新TCP连接发送的HTTP请求所花的总时间,最少等于两次网络往返的时间:一次用于握手,一次用于请求和响应。这是所有非持久HTTP会话都要付出的固定时间成本。

服务器处理速度越快,固定延迟对每个网络请求总时间的影响就越大!要验证这一点,可以改一改前面例子中的往返时间和服务器处理时间。”

实际上,这时候最简单的优化就是重用底层的连接!添加对HTTP持久连接的支持,就可以避免第二次TCP连接时的三次握手、消除另一次TCP慢启动的往返,节约整整一次网络延迟。

通过持久TCP连接取得HTML和CSS文件

在我们两个请求的例子中,总共只节约了一次往返时间。但是,更常见的情况是一次TCP连接要发送N 次HTTP请求,这时:

  • 没有持久连接,每次请求都会导致两次往返延迟;

  • 有持久连接,只有第一次请求会导致两次往返延迟,后续请求只会导致一次往返延迟。

在启用持久连接的情况下,N 次请求节省的总延迟时间就是(N -1)×RTT。还记得吗,前面说过,在当代Web应用中,N 的平均值是90,而且还在继续增加。因此,依靠持久连接节约的时间,很快就可以用秒来衡量了!这充分说明持久化HTTP是每个Web应用的关键优化手段。

HTTP管道

持久HTTP可以让我们重用已有的连接来完成多次应用请求,但多次请求必须严格满足先进先出(FIFO)的队列顺序:发送请求,等待响应完成,再发送客户端队列中的下一个请求。HTTP管道是一个很小但对上述工作流却非常重要的一次优化。管道可以让我们把

FIFO队列从客户端(请求队列)迁移到服务器(响应队列)。

要理解这样做的好处,我们再看一看通过持久TCP连接取得HTML和CSS文件示意图。首先,服务器处理完第一次请求后,会发生了一次完整的往返:先是响应回传,接着是第二次请求。在此期间服务器空闲。如果服务器能在处理完第一次请求后,立即开始处理第二次请求呢?甚至,如果服务器可以并行或在多线程上或者使用多个工作进程,同时处理两个请求呢?

通过尽早分派请求,不被每次响应阻塞,可以再次消除额外的网络往返。这样,就从非持久连接状态下的每个请求两次往返,变成了整个请求队列只需要两次网络往返!

现在我们暂停一会,回顾一下在性能优化方面的收获。一开始,每个请求要用两个TCP连接,总延迟为284 ms。在使用持久连接后,避免了一次握手往返,总延迟减少为228 ms。最后,通过使用HTTP管道,又减少了两次请求之间的一次往返,总延迟减少为172 ms。这样,从284 ms到172 ms,这40%的性能提升完全拜简单的协议优化所赐。

而且,这40%的性能提升还不是固定不变的。这个数字与我们选择的网络延迟和两个请求的例子有关。希望读者自己能够尝试一些不同的情况,比如延迟更高、请求更多的情况。尝试之后,你会惊讶于性能提升效果比这里还要高得多。事实上,网络延迟越高,请求越多,节省的时间就越多。我觉得大家很有必要自己动手验证一下这个结果。因此,越是大型应用,网络优化的影响越大。

不过,这还不算完。眼光敏锐的读者可能已经发现了,我们可以在服务器上并行处理请求。理论上讲,没有障碍可以阻止服务器同时处理管道中的请求,从而再减少20 ms的延迟。

可惜的是,当我们想要采取这个优化措施时,发现了HTTP 1.x协议的一些局限性。HTTP 1.x只能严格串行地返回响应。特别是,HTTP 1.x不允许一个连接上的多个响应数据交错到达(多路复用),因而一个响应必须完全返回后,下一个响应才会开始传输。为说明这一点,我们可以看看服务器并行处理请求的情况(如下图)。

上图演示了如下几个方面:

  • HTML和CSS请求同时到达,但先处理的是HTML请求;

  • 服务器并行处理两个请求,其中处理HTML用时40 ms,处理CSS用时20 ms;

  • CSS请求先处理完成,但被缓冲起来以等候发送HTML响应;

  • 发送完HTML响应后,再发送服务器缓冲中的CSS响应。”

即使客户端同时发送了两个请求,而且CSS资源先准备就绪,服务器也会先发送HTML响应,然后再交付CSS。这种情况通常被称作队首阻塞 ,并经常导致次优化交付:不能充分利用网络连接,造成服务器缓冲开销,最终导致无法预测的客户端延迟。假如第一个请求无限期挂起,或者要花很长时间才能处理完,怎么办呢?在HTTP 1.1中,所有后续的请求都将被阻塞,等待它完成。

实际中,由于不可能实现多路复用,HTTP管道会导致HTTP服务器、代理和客户端出现很多微妙的,不见文档记载的问题:

  • 一个慢响应就会阻塞所有后续请求;

  • 并行处理请求时,服务器必须缓冲管道中的响应,从而占用服务器资源,如果有个响应非常大,则很容易形成服务器的受攻击面;

  • 响应失败可能终止TCP连接,从页强迫客户端重新发送对所有后续资源的请求,导致重复处理;

  • 由于可能存在中间代理,因此检测管道兼容性,确保可靠性很重要;

  • 如果中间代理不支持管道,那它可能会中断连接,也可能会把所有请求串联起来。

由于存在这些以及其他类似的问题,而HTTP 1.1标准中也未对此做出说明,HTTP管道技术的应用非常有限,虽然其优点毋庸置疑。今天,一些支持管道的浏览器,通常都将其作为一个高级配置选项,但大多数浏览器都会禁用它。换句话说,如果浏览器是Web应用的主要交付工具,那还是很难指望通过HTTP管道来提升性能。

使用多个TCP连接

由于HTTP 1.x不支持多路复用,浏览器可以不假思索地在客户端排队所有HTTP请求,然后通过一个持久连接,一个接一个地发送这些请求。然而,这种方式在实践中太慢。实际上,浏览器开发商没有别的办法,只能允许我们并行打开多个TCP会话。多少个?现实中,大多数现代浏览器,包括桌面和移动浏览器,都支持每个主机打开6个连接。
进一步讨论之前,有必要先想一想同时打开多个TCP连接意味着什么。当然,有正面的也有负面的。下面我们以每个主机打开最多6个独立连接为例:

  • 客户端可以并行分派最多6个请求;

  • 服务器可以并行处理最多6个请求;

  • 第一次往返可以发送的累计分组数量(TCP cwnd)增长为原来的6倍。

在没有管道的情况下,最大的请求数与打开的连接数相同。相应地,TCP拥塞窗口也要乘以打开的连接数量,从而允许客户端绕开由TCP慢启动规定的分组限制。这好像是一个方便的解决方案。我们再看看这样做的代价:

  • 更多的套接字会占用客户端、服务器以及代理的资源,包括内存缓冲区和CPU时钟周期;

  • 并行TCP流之间竞争共享的带宽;

  • 由于处理多个套接字,实现复杂性更高;

  • 即使并行TCP流,应用的并行能力也受限制。

实践中,CPU和内存占用并非微不足道,由此会导致客户端和服务器端的资源占用量上升,运维成本提高。类似地,由于客户端实现的复杂性提高,开发成本也会提高。最后,说到应用的并行性,这种方式提供的好处还是非常有限的。这不是一个长期的方案。了解这些之后,可以说今天之所以使用它,主要有三个原因:

  • 作为绕过应用协议(HTTP)限制的一个权宜之计;

  • 作为绕过TCP中低起始拥塞窗口的一个权宜之计;

  • 作为让客户端绕过不能使用TCP窗口缩放”的一个权宜之计。

后两个针对TCP的问题(窗口缩放和cwnd)最好是通过升级到最新的OS内核来解决。cwnd值最近又提高到了10个分组,而所有最新的平台都能可靠地支持TCP窗口缩放。这当然是好消息。但坏消息是,没有更好办法绕开HTTP 1.x的多路复用问题。

只要必须支持HTTP 1.x客户端,就不得不想办法应对多TCP流的问题。而这又会带来一个明显的问题:为什么浏览器要规定每个主机6个连接呢?恐怕有读者也猜到了,这个数字是多方平衡的结果:这个数字越大,客户端和服务器的资源占用越多,但随之也会带来更高的请求并行能力。每个主机6个连接只不过是大家都觉得比较安全的一个数字。对某些站点而言,这个数字已经足够了,但对其他站点来说,可能还满足不了需求。

域名分区

HTTP 1.x协议的一项空白强迫浏览器开发商引入并维护着连接池,每个主机最多6个TCP流。好的一方面是对这些连接的管理工作都由浏览器来处理。作为应用开发者,你根本不必修改自己的应用。不好的一方面呢,就是6个并行的连接对你的应用来说可能仍然不够用。

根据HTTP Archive的统计,目前平均每个页面都包含90多个独立的资源,如果这些资源都来自同一个主机,那么仍然会导致明显的排队等待(如下图所示)。实际上,何必把自己只限制在一个主机上呢?我们不必只通过一个主机(例如www.example.com)提供所有资源,而是可以手工将所有资源分散到多个子域名:{shard1, shardn}.example.com。由于主机名称不一样了,就可以突破浏览器的连接限制,实现更高的并行能力。域名分区使用得越多,并行能力就越强!

由于每个主机只能同时发起6个连接而导致的资源错列

当然,天下没有免费的午餐,域名分区也不例外:每个新主机名都要求有一次额外的DNS查询,每多一个套接字都会多消耗两端的一些资源,而更糟糕的是,站点作者必须手工分离这些资源,并分别把它们托管到多个主机上。

实践中,域名分区经常会被滥用,导致几十个TCP流都得不到充分利用,其中很多永远也避免不了TCP慢启动,最坏的情况下还会降低性能。此外,如果使用的是HTTPS,那么由于TLS握手导致的额外网络往返,会使得上述代价更高。此时,请大家注意如下几条:

  • 首先,把TCP利用好;

  • 浏览器会自动为你打开6个连接;

  • 资源的数量、大小和响应时间都会影响最优的分区数目;”

  • 客户端延迟和带宽会影响最优的分区数目;

  • 域名分区会因为额外的DNS查询和TCP慢启动而影响性能。

域名分区是一种合理但又不完美的优化手段。请大家一定先从最小分区数目(不分区)开始,然后逐个增加分区并度量分区后对应用的影响。现实当中,真正因同时打开十几个连接而提升性能的站点并不多,如果你最终使用了很多分区,那么你会发现减少资源数量或者将它们合并为更少的请求,反而能带来更大的好处。

DNS查询和TCP慢启动导致的额外消耗对高延迟客户端的影响最大。换句话说,移动(3G、4G)客户端经常是受过度域名分区影响最大的!

度量和控制协议开销

HTTP 0.9当初就是一个简单的只有一行的ASCII请求,用于取得一个超文本文档,这样导致的开销是最小的。HTTP 1.0增加了请求和响应首部,以便双方能够交换有关请求和响应的元信息。最终,HTTP 1.1把这种格式变成了标准:服务器和客户端都可以轻松扩展首部,而且始终以纯文本形式发送,以保证与之前HTTP版本的兼容。

今天,每个浏览器发起的HTTP请求,都会携带额外500~800字节的HTTP元数据:用户代理字符串、很少改变的接收和传输首部、缓存指令,等等。有时候,500~800字节都少说了,因为没有包含最大的一块:HTTP cookie。现代应用经常通过cookie进行会话管理、记录个性选项或者完成分析。综合到一起,所有这些未经压缩的HTTP元数据经常会给每个HTTP请求增加几千字节的协议开销。

HTTP首部的增多对它本身不是坏事,因为大多数首部都有其特定用途。然而,由于所有HTTP首部都以纯文本形式发送(不会经过任何压缩),这就会给每个请求附加较高的额外负荷,而这在某些应用中可能造成严重的性能问题。举个例子,API驱动的Web应用越来越多,这些应用需要频繁地以序列化消息(如JSON)的形式通信。在这些应用中,额外的HTTP开销经常会超过实际传输的数据净荷一个数量级:

“$> curl --trace-ascii - -
d'{&quot;msg&quot;:&quot;hello&quot;}'
http://www.igvita.com/api”

对应的结果:

== Info: Connected to www.igvita.com
=> Send header, 218 bytes ➊
POST /api HTTP/1.1
User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 ...
Host: www.igvita.com
Accept: */*
Content-Length: 15 ➋
Content-Type: application/x-www-form-urlencoded
=> Send data, 15 bytes (0xf)
{&quot;msg&quot;:&quot;hello&quot;} <= Recv header, 134 bytes ➌
HTTP/1.1 204 No Content
Server: nginx/1.0.11
Via: HTTP/1.1 GWA
Date: Thu, 20 Sep 2012 05:41:30 GMT
Cache-Control: max-age=0, no-cache
  1. HTTP请求首部:218字节

  2. 应用静荷15字节({&quot;msg”:&quot;hello&quot;})

  3. 服务器的204响应:134字节

在前面的例子中,寥寥15个字符的JSON消息被352字节的HTTP首部包裹着,全部以纯文本形式发送——协议字节开销占96%,而且这还是没有cookie的最好情况。减少要传输的首部数据(高度重复且未压缩),可以节省相当于一次往返的延迟时间,显著提升很多Web应用的性能。

“Cookie在很多应用中都是常见的性能瓶颈,很多开发者都会忽略它给每次请求增加的额外负担。

连接与拼合

最快的请求是不用请求。不管使用什么协议,也不管是什么类型的应用,减少请求次数总是最好的性能优化手段。可是,如果你无论如何也无法减少请求,那么对HTTP 1.x而言,可以考虑把多个资源捆绑打包到一块,通过一次网络请求获取:

  • 连接 :把多个JavaScript或CSS文件组合为一个文件。

  • 拼合:把多张图片组合为一个更大的复合的图片。

对JavaScript和CSS来说,只要保持一定的顺序,就可以做到把多个文件连接起来而不影响代码的行为和执行。类似地,多张图片可以组合为一个“图片精灵”,然后使用CSS选择这张大图中的适当部分,显示在浏览器中。这两种技术都具备两方面的优点。

  • 减少协议开销:通过把文件组合成一个资源,可以消除与文件相关的协议开销。如前所述,每个文件很容易招致KB级未压缩数据的开销。

  • 应用层管道:说到传输的字节,这两种技术的效果都好像是启用了HTTP管道:来自多个响应的数据前后相继地连接在一起,消除了额外的网络延迟。实际上,就是把管道提高了一层,置入了应用中。

连接和拼合技术都属于以内容为中心的应用层优化,它们通过减少网络往返开销,可以获得明显的性能提升。可是,实现这些技术也要求额外的处理、部署和编码(比如选择图片精灵中子图的CSS代码),因而也会给应用带来额外的复杂性。此外,把多个资源打包到一块,也可能给缓存带来负担,影响页面的执行速度。

要理解为什么这些技术会伤害性能,可以考虑一种并不少见的情况:一个包含十来个JavaScript和CSS文件的应用,在产品状态下把所有文件合并为一个CSS文件和一个JavaScript文件。

  • 相同类型的资源都位于一个URL(缓存键)下面。

  • 资源包中可能包含当前页面不需要的内容。

  • 对资源包中任何文件的更新,都要求重新下载整个资源包,导致较高的字节开销。

  • JavaScript和CSS只有在传输完成后才能被解析和执行,因而会拖慢应用的执行速度。

实践中,大多数Web应用都不是只有一个页面,而是由多个视图构成。每个视图都有自己的资源,同时资源之间还有部分重叠:公用的CSS、JavaScript和图片。实际上,把所有资源都组合到一个文件经常会导致处理和加载不必要的字节。虽然可以把它看成一种预获取,但代价则是降低了初始启动的速度。

对很多应用来说,更新资源带来的问题更大。更新图片精灵或组合JavaScript文件中的某一处,可能就会导致重新传输几百KB数据。由于牺牲了模块化和缓存粒度,假如打包资源变动频率过高,特别是在资源包过大的情况下,很快就会得不偿失。如果你的应用真到了这种境地,那么可以考虑把“稳定的核心”,比如框架和库,转移到独立的包中。

内存占用也会成为问题。对图片精灵来说,浏览器必须分析整个图片,即便实际上只显示了其中的一小块,也要始终把整个图片都保存在内存中。浏览器是不会把不显示的部分从内存中剔除掉的!

最后,为什么执行速度还会受影响呢?我们知道,浏览器是以递增方式处理HTML的,而对于JavaScript和CSS的解析及执行,则要等到整个文件下载完毕。JavaScript和CSS处理器都不允许递增式执行。

CSS和JavaScript文件大小与执行性能

CSS文件越大,浏览器在构建CSSOM前经历的阻塞时间就越长,从而推迟首次绘制页面的时间。类似地,JavaScript文件越大,对执行速度的影响同样越大;小文件倒是能实现“递增式”执行。打包文件到底多大合适呢?可惜的是,没有理想的大小。然而,谷歌PageSpeed团队的测试表明,30~50 KB(压缩后)是每个JavaScript文件大小的合适范围:既大到了能够减少小文件带来的网络延迟,还能确保递增及分层式的执行。具体的结果可能会由于应用类型和脚本数量而有所不同。

总之,连接和拼合是在HTTP 1.x协议限制(管道没有得到普遍支持,多请求开销大)的现实之下可行的应用层优化。使用得当的话,这两种技术可以带来明显的性能提升,代价则是增加应用的复杂度,以及导致缓存、更新、执行速度,甚至渲染页面的问题。应用这两种优化时,要注意度量结果,根据实际情况考虑如下问题。

  • 你的应用在下载很多小型的资源时是否会被阻塞?

  • 有选择地组合一些请求对你的应用有没有好处?

  • 放弃缓存粒度对用户有没有负面影响?

  • 组合图片是否会占用过多内存?

  • 首次渲染时是否会遭遇延迟执行?

在上述问题的答案间求得平衡是一种艺术。

嵌入资源

嵌入资源是另一种非常流行的优化方法,把资源嵌入文档可以减少请求的次数。比如,JavaScript和CSS代码,通过适当的script 和style 块可以直接放在页面中,而图片甚至音频或PDF文件,都可以通过数据URI(data:[mediatype][;base64],data )的方式嵌入到页面中:

<img src=&quot;
AAAAAACH5BAAAAAAALAAAAAABAAEAAAICTAEAOw==&quot;
alt=&quot;1x1 transparent (GIF) pixel&quot; />

数据URI适合特别小的,理想情况下,最好是只用一次的资源。以嵌入方式放到页面中的资源,应该算是页面的一部分,不能被浏览器、CDN或其他缓存代理作为单独的资源缓存。换句话说,如果在多个页面中都嵌入同样的资源,那么这个资源将会随着每个页面的加载而被加载,从而增大每个页面的总体大小。另外,如果嵌入资源被更新,那么所有以前出现过它的页面都将被宣告无效,而由客户端重新从服务器获取。

最后,虽然CSS和JavaScript等基于文本的资源很容易直接嵌入页面,也不会带来多余的开销,但非文本性资源则必须通过base64编码,而这会导致开销明显增大:编码后的资源大小比原大小增大33%!

base64编码使用64个ASCII符号和空白符将任意字节流编码为ASCII字符串。编码过程中,base64会导致被编码的流变成原来的4/3,即增大33%的字节开销。

实践中,常见的一个经验规则是只考虑嵌入1~2 KB以下的资源,因为小于这个标准的资源经常会导致比它自身更高的HTTP开销。然而,如果嵌入的资源频繁变更,又会导致宿主文档的无效缓存率升高。嵌入资源也不是完美的方法。如果你的应用要使用很小的、个别的文件,在考虑是否嵌入时,可以参照如下建议:

  • 如果文件很小,而且只有个别页面使用,可以考虑嵌入;

  • 如果文件很小,但需要在多个页面中重用,应该考虑集中打包;

  • 如果小文件经常需要更新,就不要嵌入了;

  • 通过减少HTTP cookie的大小将协议开销最小化。

参考书籍:

Ilya Grigorik. Web性能权威指南 (图灵程序设计丛书)

HTTP 1.x 学习笔记 —— Web 性能权威指南的更多相关文章

  1. 经典的性能优化最佳实践 web性能权威指南 读书笔记

    web性能权威指南 page 203 经典的性能优化最佳实践 无论什么网络,也不管所用网络协议是什么版本,所有应用都应该致力于消除或减 少不必要的网络延迟,将需要传输的数据压缩至最少.这两条标准是经典 ...

  2. 《Web性能权威指南》

    <Web性能权威指南> 基本信息 原书名:High performance browser networking 原出版社: O'Reilly Media 作者: (加)Ilya Grig ...

  3. web性能权威指南(High Performance Browser Networking)

    web性能权威指南(High Performance Browser Networking) https://www.cnblogs.com/qcloud1001/p/9663524.html HTT ...

  4. Web性能权威指南 PDF扫描版​

    Web性能权威指南是谷歌公司高性能团队核心成员的权威之作,堪称实战经验与规范解读完美结合的产物.<Web性能权威指南>目标是涵盖Web开发者技术体系中应该掌握的所有网络及性能优化知识.全书 ...

  5. 【Web性能权威指南】 PDF

    Web性能权威指南.pdf 网盘:https://545c.com/file/24657411-424998805     获取码:276922

  6. loadrunner 场景设计-学习笔记之性能误区

    场景设计-学习笔记之性能误区 by:授客 QQ:1033553122 场景假设: 每个事务仅包含一次请求,执行10000个并发用户数 性能误区: 每秒并发用户数=每秒向服务器提交请求数 详细解答: 每 ...

  7. 读书笔记--Android Gradle权威指南(下)

    前言 最近看了一本书<Android Gradle 权威指南>,收获挺多,就想着来记录一些读书笔记,方便后续查阅. 本篇内容是基于上一篇:读书笔记--Android Gradle权威指南( ...

  8. 读书笔记--Android Gradle权威指南(上)

    本篇文章已授权微信公众号 dasu_Android(大苏)独家发布 最近看了一本书<Android Gradle 权威指南>,对于 Gradle 理解又更深了,但不想过段时间就又忘光了,所 ...

  9. 树莓派学习笔记——USB wifi配置指南

    0 前言     树莓派既能够使用有线网络又能够无线网络,假设使用有线网络不方便的话能够借助USB wifi无线网卡让树莓派也插上无线"翅膀". 可是和使用有线网络即插即用的方式不 ...

随机推荐

  1. (31)grep命令详解:查找文件内容

    1.grep命令用于不需要列出文件的全部内容,而是从文件中找到包含指定信息的那些行. grep命令能够在一个或多个文件中,搜索某一特定的字符模式(也就是正则表达式),此模式可以是单一的字符.字符串.单 ...

  2. Java线程八锁

    package com.atguigu.juc1205; import java.util.concurrent.TimeUnit; class Phone//Phone.java ---> P ...

  3. CF-1445 C - Division 数论,质因数,唯一分解定理

    题意 给定一个 \(p (p\le 10^{18})\), 一个 \(q(q \le 10^9)\), 要找到一个最大的 \(x\) 满足: \(p \%x = 0\) \(q \% x \neq 0 ...

  4. 2018 ACM-ICPC 焦作区域赛 E Resistors in Parallel

    Resistors in Parallel Gym - 102028E 吐槽一下,网上搜索的题解一上来都是找规律,对于我这种对数论不敏感的人来说,看这种题解太难受了,找规律不失为一种好做法,但是题解仅 ...

  5. Educational Codeforces Round 85 (Rated for Div. 2)

    \(Educational\ Codeforces\ Round\ 85\ (Rated\ for\ Div.2)\) \(A. Level Statistics\) 每天都可能会有人玩游戏,同时一部 ...

  6. Educational Codeforces Round 88 (Rated for Div. 2) D. Yet Another Yet Another Task(枚举/最大连续子序列)

    题目链接:https://codeforces.com/contest/1359/problem/D 题意 有一个大小为 $n$ 的数组,可以选取一段连续区间去掉其中的最大值求和,问求和的最大值为多少 ...

  7. 【noi 2.6_9289】Ant Counting 数蚂蚁{Usaco2005 Nov}(DP)

    题意:有M个家族的蚂蚁,各Ni只(互相相同).问选出 l~r 只的不同方案数. 解法:很基础的一种DP,不要被"排列组合"所迷惑了啊~我之前接触过这个类型,可惜又忘了,一定要记住! ...

  8. hdu1625 Numbering Paths (floyd判环)

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission ...

  9. Leetcode 30 串联所有单词的子串 滑动窗口+map

    见注释.滑动窗口还是好用. class Solution { public: vector<int> findSubstring(string s, vector<string> ...

  10. 杭电多校HDU 6656 Kejin Player(概率DP)题解

    题意: 最低等级\(level\ 1\),已知在\(level\ i\)操作一次需花费\(a_i\),有概率\(p_i\)升级到\(level\ i+1\),有\(1 - p_i\)掉级到\(x_i( ...