【学习笔记】 Adaboost算法
前言
之前的学习中也有好几次尝试过学习该算法,但是都无功而返,不仅仅是因为该算法各大博主、大牛的描述都比较晦涩难懂,同时我自己学习过程中也心浮气躁,不能专心。
现如今决定一口气肝到底,这样我明天就可以正式开始攻克阿里云天池大赛赛题,所以今天一天必须把Adaboost算法拿下!!!
Adaboost
boosting与bagging
- boosting
个体学习器间存在强依赖关系、必须串行生成的序列化方法,提高那些在前一轮被弱分类器分错的样本的权值,减小那些在前一轮被弱分类器分对的样本的权值,
使误分的样本在后续受到更多的关注。
体现了串行
加法模型将弱分类器进行线性组合
代表模型:Adaboost,GBDT,XGBoost,LightGBM - bagging
个体学习器不存在强依赖系,可同时生成的并行化方法
Adaboost算法
关于adaboost,我找到了一段非常易懂的描述,具体说来,整个Adaboost 迭代算法就3步:
- 初始化训练数据的权值分布。如果有N个样本,则每一个训练样本最开始时都被赋予相同的权值:1/N。
- 训练弱分类器。具体训练过程中,如果某个样本点已经被准确地分类,那么在构造下一个训练集中,它的权值就被降低;相反,如果某个样本点没有被准确地分类,那么它的权值就得到提高。然后,权值更新过的样本集被用于训练下一个分类器,整个训练过程如此迭代地进行下去。
- 将各个训练得到的弱分类器组合成强分类器。各个弱分类器的训练过程结束后,加大分类误差率小的弱分类器的权重,使其在最终的分类函数中起着较大的决定作用,而降低分类误差率大的弱分类器的权重,使其在最终的分类函数中起着较小的决定作用。换言之,误差率低的弱分类器在最终分类器中占的权重较大,否则较小。
所谓的弱学习器,其实就是之前学的一些模型,比如逻辑斯蒂回归模型,决策树模型,都可以称之为弱学习器。而强学习器,就是以后会接触到的一些神经网络模型,而集成学习的思想,就使用多个弱学习器组合来达成强学习器的思想
算法流程
首先确定一个二分类的训练数据集,然后定义基分类器(弱分类器),例如回归就用cart里的回归树,分类就用cart里的分类树等等,然后开始循环
- 第一步,分为初始化和更新两种可能
1.初始化当前训练数据的权值分布
2.更新,首先是当前分类器所算出的每个样本的权值赋给Dm
而这里的w(m,i)实际是
逐步解释一下,首先是分母部分的,看上去复杂的不得了,实际上是一个归一化操作,为的是让整个分布变成一个概率分布
而对于,这个式子他简单来说就是一个具有我们所需要的功能的函数,因为我们要的功能很复杂,所以函数设计的很吓人,但是其实我只需要记住她,然后知道他具有能够在分类正确时降低函数值,分类错误时提高函数值,从而达到更新权重的目的
- 第二步,训练当前基分类器
- 第三步,确定权值
1.权值的计算公式简单来说就是如果分类正确就不计入统计,分类错误的话其权值就会被累加计算,而最后算出来的结果记为em,有0≤em≤0.5
2.根据em,计算基分类器的权重系数,给出的公式可以保证当em越小,基分类器的权值越大
- 第四步,把权值和训练好的分类器放入加法模型
- 第五步,判断是否满足循环条件
1.分类器个数是否达到M
2.总分类器误差率是否满足要求
AdaBoost分类问题的损失函数优化
正如刘老师博客中所说:刚才上一节我们讲到了分类Adaboost的弱学习器权重系数公式和样本权重更新公式。但是没有解释选择这个公式的原因,让人觉得是魔法公式一样。其实它可以从Adaboost的损失函数推导出来。
通过视频 https://www.bilibili.com/video/BV1x44y1r7Zc?p=6 的讲解,自己推了三遍,终于成功!附上稿纸
Adaboost小结
Adaboost的主要优点有:
- Adaboost作为分类器时,分类精度很高
- 在Adaboost的框架下,可以使用各种回归分类模型来构建弱学习器,非常灵活。
- 作为简单的二元分类器时,构造简单,结果可理解。
- 不容易发生过拟合
Adaboost的主要缺点有:
- 对异常样本敏感,异常样本在迭代中可能会获得较高的权重,影响最终的强学习器的预测准确性。
小结
下一篇我会具体的学习GBDT和XgBoost
【学习笔记】 Adaboost算法的更多相关文章
- 数据挖掘学习笔记--AdaBoost算法(一)
声明: 这篇笔记是自己对AdaBoost原理的一些理解,如果有错,还望指正,俯谢- 背景: AdaBoost算法,这个算法思路简单,但是论文真是各种晦涩啊-,以下是自己看了A Short Introd ...
- 集成学习值Adaboost算法原理和代码小结(转载)
在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类: 第一个是个体学习器之间存在强依赖关系: 另一类是个体学习器之间不存在强依赖关系. 前者的代表算法就是提升(bo ...
- [ML学习笔记] XGBoost算法
[ML学习笔记] XGBoost算法 回归树 决策树可用于分类和回归,分类的结果是离散值(类别),回归的结果是连续值(数值),但本质都是特征(feature)到结果/标签(label)之间的映射. 这 ...
- 集成学习之Adaboost算法原理小结
在集成学习原理小结中,我们讲到了集成学习按照个体学习器之间是否存在依赖关系可以分为两类,第一个是个体学习器之间存在强依赖关系,另一类是个体学习器之间不存在强依赖关系.前者的代表算法就是是boostin ...
- 学习笔记 - Manacher算法
Manacher算法 - 学习笔记 是从最近Codeforces的一场比赛了解到这个算法的~ 非常新奇,毕竟是第一次听说 \(O(n)\) 的回文串算法 我在 vjudge 上开了一个[练习],有兴趣 ...
- 集成学习之Adaboost算法原理
在boosting系列算法中,Adaboost是最著名的算法之一.Adaboost既可以用作分类,也可以用作回归. 1. boosting算法基本原理 集成学习原理中,boosting系列算法的思想:
- 学习笔记——EM算法
EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计.EM算法的每次迭代由两步组成:E步,求期望(expectation):M步,求 ...
- 学习笔记-KMP算法
按照学习计划和TimeMachine学长的推荐,学习了一下KMP算法. 昨晚晚自习下课前粗略的看了看,发现根本理解不了高端的next数组啊有木有,不过好在在今天系统的学习了之后感觉是有很大提升的了,起 ...
- Java学习笔记——排序算法之快速排序
会当凌绝顶,一览众山小. --望岳 如果说有哪个排序算法不能不会,那就是快速排序(Quick Sort)了 快速排序简单而高效,是最适合学习的进阶排序算法. 直接上代码: public class Q ...
- Java学习笔记——排序算法之进阶排序(堆排序与分治并归排序)
春蚕到死丝方尽,蜡炬成灰泪始干 --无题 这里介绍两个比较难的算法: 1.堆排序 2.分治并归排序 先说堆. 这里请大家先自行了解完全二叉树的数据结构. 堆是完全二叉树.大顶堆是在堆中,任意双亲值都大 ...
随机推荐
- .NET服务治理之限流中间件-FireflySoft.RateLimit
概述 FireflySoft.RateLimit自2021年1月发布第一个版本以来,经历了多次升级迭代,目前已经十分稳定,被很多开发者应用到了生产系统中,最新发布的版本是3.0.0. Github:h ...
- go-zero微服务实战系列(十一、大结局)
本篇是整个系列的最后一篇了,本来打算在系列的最后一两篇写一下关于k8s部署相关的内容,在构思的过程中觉得自己对k8s知识的掌握还很不足,在自己没有理解掌握的前提下我觉得也很难写出自己满意的文章,大家看 ...
- MISC 2022/4/21 刷题记录-千字文
1.千字文 得到名为png的无类型文件,010 Editor查看,png,改后缀,得到二维码 QR扫描,得到一句话"这里只有二维码" 思路不对,binwalk一下,发现有错误信息 ...
- letsencrypt更换pip源
vim letsencrypt-auto 将DEFAULT_INDEX_BASE = 'https://pypi.python.org'改为DEFAULT_INDEX_BASE = 'http://m ...
- Homebrew安装(macos)
参照大佬的博客文章:https://zhuanlan.zhihu.com/p/111014448 OSX 将下面命令复制到终端执行 /bin/zsh -c "$(curl -fsSL htt ...
- 使用flex防止fit-content子元素冲出父元素宽度的方法
父元素设置了min-width:fit-content后,其宽度由子元素的宽度来决定 <!DOCTYPE html> <html lang="en"> &l ...
- 常用的函数式接口Consumer接口练习字符串拼接输出
题目 下面的字符串数组当中有多条信息,请按照格式"姓名: XX 性别: XX"的格式将信息打印出来,要求将 打印姓名的动作为第一个Consumer接口的Lambda实例,将打印性别 ...
- Windows高效开发环境配置(一)
更多精彩内容,欢迎关注公众号:逻魔代码 前言 用了多年的 MacOS 做开发,一系列诸如 Alfred.Item2.Oh-my-zsh 之类的工具,大大地提升了工作的效率和使用舒适度.新工作不给配 M ...
- TechEmpower 21轮Web框架 性能评测 -- C# 的性能 和 Rust、C++并驾齐驱
自从2021年2月第20轮公布的测试以后,一年半后 的2022年7月19日 发布了 TechEmpower 21轮测试报告:Round 21 results - TechEmpower Framewo ...
- Redis 03 字符串
参考源 https://www.bilibili.com/video/BV1S54y1R7SB?spm_id_from=333.999.0.0 版本 本文章基于 Redis 6.2.6 应用场景:计数 ...