NC14585 大吉大利,今晚吃鸡

题目

题目描述

糖和抖m在玩个游戏,规定谁输了就要请谁吃顿大餐:抖m给糖a b c三个驻, 并在a柱上放置了数量为n的圆盘,圆盘的大小从上到下依次增大,现在要做的事就是把a柱的圆盘全部移到c柱,移动的过程中保持小盘在上,大盘在下,且限定圆盘只能够移动到相邻的柱子,即a柱子上的圆盘只能够移动到b,b柱子上的圆盘只能够移动到a或者c,c同理。现在请你设计一个程序,计算所需移动的最小步数, 帮助糖赢得大餐!

输入描述

每一行输出有一个整数 \(n\) \((0\leq n<26)\), 直至文件末尾。

输出描述

对于每一组数据,输出一行,输出移动的最小步数 \(M\)。

示例1

输入

1

输出

2

题解

思路

知识点:递归,思维。

与普通的汉诺塔不同的是,此汉诺塔的 \(f(n)\) 表示的 \(A\) 到 \(C\) 的两步而不是一步。过程如下:

  1. 把 \(n-1\) 个圆盘从 \(A\) 移到 \(B\) 再移到 \(C\) 走了 \(f(n-1)\) 步
  2. 把第 \(n\) 个盘子从 \(A\) 移到 \(B\) 走了一步
  3. 把 \(n-1\) 个圆盘从 \(C\) 移到 \(B\) 再移到 \(A\) 走了 \(f(n-1)\) 步
  4. 把第 \(n\) 个盘子从 \(B\) 移到 \(C\) 走了一步
  5. 把 \(n-1\) 个圆盘从 \(A\) 移到 \(B\) 再移到 \(C\) 走了 \(f(n-1)\) 步

于是有递推公式 \(f(n) = 3f(n-1) + 2\) 。

解得 \(f(n) = 3^n-1\) 。

时间复杂度 \(O(\log n)\)

空间复杂度 \(O(1)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; /* long long cnt;
void hanoi2(char A, char B, char C, int n) {
if (n == 1) {
cout << "Step " << ++cnt << ": " << A << " -> " << B << '\n';
cout << "Step " << ++cnt << ": " << B << " -> " << C << '\n';
return;
}
hanoi2(A, B, C, n - 1);
cout << "Step " << ++cnt << ": " << A << " -> " << B << '\n';
hanoi2(C, B, A, n - 1);
cout << "Step " << ++cnt << ": " << B << " -> " << C << '\n';
hanoi2(A, B, C, n - 1);
} */ ///这里的f(n) 指从A到C的两步 ll qpow(ll a, int k) {
ll ans = 1;
while (k) {
if (k & 1) ans = ans * a;
k >>= 1;
a = a * a;
}
return ans;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n;
while (cin >> n) {
//cnt = 0;
//hanoi2('A', 'B', 'C', n);
//cout << cnt << '\n';
cout << qpow(3, n) - 1 << '\n';
}
return 0;
}

NC14585 大吉大利,今晚吃鸡的更多相关文章

  1. [BZOJ5109][LOJ #6252][P4061][CodePlus 2017 11月赛]大吉大利,今晚吃鸡!(最短路+拓扑排序+传递闭包+map+bitset(hash+压位))

    5109: [CodePlus 2017]大吉大利,晚上吃鸡! Time Limit: 30 Sec  Memory Limit: 1024 MBSubmit: 107  Solved: 57[Sub ...

  2. 大吉大利,晚饭吃鸡!——accept关闭问题

    假期收尾了,学芽子们都军训了.一群张一山和周冬雨在校内晃晃悠悠,说起来春风十里也就军训比较有意思.对于我这种一年追一部剧的人,显然是有点对不住.在我假期任务即将圆满之际,我开始放慢脚步寻找生活的美妙时 ...

  3. GMA Round 1 大吉大利,晚上吃鸡

    传送门 大吉大利,晚上吃鸡 新年走亲访友能干点啥呢,咱开黑吃鸡吧. 这里有32个人,每个人都可能想玩或者不想玩,这样子一共有$2^{32}$种可能.而要开黑当然得4人4人组一队(四人模式),所以说如果 ...

  4. [BZOJ5109]大吉大利,晚上吃鸡!

    [BZOJ5109]大吉大利,晚上吃鸡! 题目大意: 一张\(n(n\le5\times10^4)\)个点\(m(m\le5\times10^4)\)条边的无向图,节点编号为\(1\)到\(n\),边 ...

  5. 【BZOJ5109】[CodePlus 2017]大吉大利,晚上吃鸡! 最短路+拓扑排序+DP

    [BZOJ5109][CodePlus 2017]大吉大利,晚上吃鸡! Description 最近<绝地求生:大逃杀>风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏.在游戏 ...

  6. 为什么MOBA、“吃鸡”游戏不推荐用tcp协议——实测数据

    欢迎大家前往云加社区,获取更多腾讯海量技术实践干货哦~ 作者:腾讯云游戏行业资深架构师 余国良 MOBA类和"吃鸡"游戏为什么对网络延迟要求高? 我们知道,不同类型的游戏因为玩法. ...

  7. 3D位置语音,引领吃鸡游戏体验升级

    欢迎大家前往云加社区,获取更多腾讯海量技术实践干货哦~ 作者:腾讯游戏云 导语:在刚刚结束的首届腾讯用户开放日上,腾讯音视频实验室带着3D位置音效解决方案,向所有用户亮相,为用户提供360度立体空间的 ...

  8. 【程序员的吃鸡大法】利用OCR文字识别+百度算法搜索,玩转冲顶大会、百万英雄、芝士超人等答题赢奖金游戏

    [先上一张效果图]: 一.原理: 其实原理很简单: 1.手机投屏到电脑: 2.截取投屏画面的题目部分,进行识别,得到题目和三个答案: 3.将答案按照一定的算法,进行搜索,得出推荐答案: 4.添加了一些 ...

  9. tcp没用吗?为什么MOBA、“吃鸡”游戏不推荐用tcp协议

    本文由云+社区发表 作者:腾讯云游戏行业资深架构师 余国良 MOBA类和"吃鸡"游戏为什么对网络延迟要求高? 我们知道,不同类型的游戏因为玩法.竞技程度不一样,采用的同步算法不一样 ...

随机推荐

  1. 手撸一个虚拟DOM,不错

    大家好,我是半夏,一个刚刚开始写文的沙雕程序员.如果喜欢我的文章,可以关注 点赞 加我微信:frontendpicker,一起学习交流前端,成为更优秀的工程师-关注公众号:搞前端的半夏,了解更多前端知 ...

  2. 最新MATLAB R2021b超详细安装教程(附完整安装文件)

    摘要:本文详细介绍Matlab R2021b的安装步骤,为方便安装这里提供了完整安装文件的百度网盘下载链接供大家使用.从文件下载到证书安装本文都给出了每个步骤的截图,按照图示进行即可轻松完成安装使用. ...

  3. zookeeper篇-zoo.cfg配置

    点赞再看,养成习惯,微信搜索「小大白日志」关注这个搬砖人. 文章不定期同步公众号,还有各种一线大厂面试原题.我的学习系列笔记. zoo.cfg即/usr/local/java/zookeeper/co ...

  4. ASP.NET视图视图表单验证

    视图表单验证 初始化项目 新建一个ASP.NET MVC的项目 新建游戏用户类: public class StemUsers { public int id { get; set; } public ...

  5. 视网膜血管分割代码(Pytorch实现)

    创建日期: 2021-12-24 17:00:00 update log(2021.12.24):B站视频删除了,回放看了一下,讲的不太行......2333,时间过得真快,转眼就是2022年了啊 2 ...

  6. Linux应急响应入门——入侵排查

    点击上方"开源Linux",选择"设为星标" 回复"学习"获取独家整理的学习资料! 账号安全: 1.用户信息文件 /etc/passwd # ...

  7. 痞子衡嵌入式:浅谈i.MXRT1xxx系列MCU时钟相关功能引脚的作用

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家介绍的是i.MXRT1xxx系列MCU时钟相关功能引脚作用. 如果我们从一颗 MCU 芯片的引脚分类来看芯片功能,大概可以分为三大类:电源.时钟 ...

  8. 【python】python连接Oracle数据库

    python连接Oracle数据库 查看Oracle版本 select * from v$version 下载对应版本的InstantClient 下载网址 InstantClient 1.解压Ins ...

  9. jeecgboot-vue3笔记(三)弹窗的使用

    需求描述 点击按钮,弹窗窗体(子组件),确定后在子组件中完成业务逻辑处理(例如添加记录),然后回调父组件刷新以显示最近记录. 实现步骤 子组件 子组件定义BasicModal <BasicMod ...

  10. 重载overload 、重写override

    观点:重载和重写完全没有关系要联系到一起,唯一的联系就是他们都带有个'重'字,所以鄙人也随大流把他们放在了一起 注意:下面可复制的代码是正确的,错误的只会上传图片,不上传可复制的代码 重载 1.在同一 ...