Python图像处理:如何获取图像属性、兴趣ROI区域及通道处理
摘要:本篇文章主要讲解Python调用OpenCV获取图像属性,截取感兴趣ROI区域,处理图像通道。
本文分享自华为云社区《[Python图像处理] 三.获取图像属性、兴趣ROI区域及通道处理 | 【生长吧!Python】》,作者:eastmount。
本篇文章主要讲解Python调用OpenCV获取图像属性,截取感兴趣ROI区域,处理图像通道。全文均是基础知识,希望对您有所帮助。
一.获取图像属性
1.形状-shape
通过shape关键字获取图像的形状,返回包含行数、列数、通道数的元祖。其中灰度图像返回行数和列数,彩色图像返回行数、列数和通道数。如下图所示:

# -*- coding:utf-8 -*-
import cv2
import numpy #读取图片
img = cv2.imread("test.jpg", cv2.IMREAD_UNCHANGED) #获取图像形状
print(img.shape) #显示图像
cv2.imshow("Demo", img) #等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
输出结果如下图所示:(445L, 670L, 3L),该图共445行、670列像素,3个通道。

2.像素数目-size
通过size关键字获取图像的像素数目,其中灰度图像返回行数 * 列数,彩色图像返回行数 * 列数 * 通道数。代码如下:
# -*- coding:utf-8 -*-
import cv2
import numpy #读取图片
img = cv2.imread("test.jpg", cv2.IMREAD_UNCHANGED) #获取图像形状
print(img.shape) #获取像素数目
print(img.size)
输出结果:
(445L, 670L, 3L)
894450
3.图像类型-dtype
通过dtype关键字获取图像的数据类型,通常返回uint8。代码如下:
# -*- coding:utf-8 -*-
import cv2
import numpy #读取图片
img = cv2.imread("test.jpg", cv2.IMREAD_UNCHANGED) #获取图像形状
print(img.shape) #获取像素数目
print(img.size) #获取图像类型
print(img.dtype)
输出结果:
(445L, 670L, 3L)
894450
uint8
二.获取感兴趣ROI区域
ROI(Region of Interest)表示感兴趣区域。它是指从被处理图像以方框、圆形、椭圆、不规则多边形等方式勾勒出需要处理的区域。可以通过各种算子(Operator)和函数求得感兴趣ROI区域,并进行图像的下一步处理,被广泛应用于热点地图、人脸识别、图像分割等领域。

通过像素矩阵可以直接获取ROI区域,如img[200:400, 200:400]。

代码如下:
# -*- coding:utf-8 -*-
import cv2
import numpy as np #读取图片
img = cv2.imread("test.jpg", cv2.IMREAD_UNCHANGED) #定义200*100矩阵 3对应BGR
face = np.ones((200, 100, 3)) #显示原始图像
cv2.imshow("Demo", img) #显示ROI区域
face = img[200:400, 200:300]
cv2.imshow("face", face) #等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
输出结果如下图所示:

下面将提取的ROI图像进行融合实验,代码如下:
# -*- coding:utf-8 -*-
import cv2
import numpy as np #读取图片
img = cv2.imread("test.jpg", cv2.IMREAD_UNCHANGED) #定义300*100矩阵 3对应BGR
face = np.ones((200, 200, 3)) #显示原始图像
cv2.imshow("Demo", img) #显示ROI区域
face = img[100:300, 150:350]
img[0:200,0:200] = face
cv2.imshow("face", img) #等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
将提取的头部融合至图像左上角部分,如下图所示:

如果想将两张图像进行融合,只需再读取一张图像即可,方法原理类似。 实现代码如下:
# -*- coding:utf-8 -*-
import cv2
import numpy as np #读取图片
img = cv2.imread("test.jpg", cv2.IMREAD_UNCHANGED)
test = cv2.imread("test3.jpg", cv2.IMREAD_UNCHANGED) #定义300*100矩阵 3对应BGR
face = np.ones((200, 200, 3)) #显示原始图像
cv2.imshow("Demo", img) #显示ROI区域
face = img[100:300, 150:350]
test[400:600,400:600] = face
cv2.imshow("Pic", test) #等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
输出结果如下图所示:

三.图像通道处理
1.通道拆分
OpenCV读取的彩色图像由B、G、R三原色组成,可以通过下面代码获取不同的通道。
b = img[:, :, 0]
g = img[:, :, 1]
r = img[:, :, 2]

也可以使用split()函数拆分通道,下面是拆分不同通道再显示的代码。
# -*- coding:utf-8 -*-
import cv2
import numpy as np #读取图片
img = cv2.imread("test.jpg", cv2.IMREAD_UNCHANGED) #拆分通道
b, g, r = cv2.split(img) #显示原始图像
cv2.imshow("B", b)
cv2.imshow("G", g)
cv2.imshow("R", r) #等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
输出结果如下图所示:

也可以获取不同的通道,核心代码如下所示: b = cv2.split(a)[0] g = cv2.split(a)[1] r = cv2.split(a)[2]
2.通道合并
图像通道合并主要调用merge()函数实现,核心代码如下:
m = cv2.merge([b, g, r])
# -*- coding:utf-8 -*-
import cv2
import numpy as np #读取图片
img = cv2.imread("test.jpg", cv2.IMREAD_UNCHANGED) #拆分通道
b, g, r = cv2.split(img) #合并通道
m = cv2.merge([b, g, r])
cv2.imshow("Merge", m) #等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
输出结果如下:

注意,如果是合并[r,g,b]三通道,则显示如下所示,因OpenCV是按照BGR进行读取的。
b, g, r = cv2.split(img)
m = cv2.merge([r, g, b])
cv2.imshow(“Merge”, m)

同时,可以提取图像的不同颜色,提取B颜色通道,G、B通道设置为0,则显示蓝色。代码如下所示:
# -*- coding:utf-8 -*-
import cv2
import numpy as np #读取图片
img = cv2.imread("test.jpg", cv2.IMREAD_UNCHANGED)
rows, cols, chn = img.shape #拆分通道
b = cv2.split(img)[0]
g = np.zeros((rows,cols),dtype=img.dtype)
r = np.zeros((rows,cols),dtype=img.dtype) #合并通道
m = cv2.merge([b, g, r])
cv2.imshow("Merge", m) #等待显示
cv2.waitKey(0)
cv2.destroyAllWindows()
蓝色通道输出结果如下所示:

绿色通道核心代码及输出结果如下所示:
rows, cols, chn = img.shape
b = np.zeros((rows,cols),dtype=img.dtype)
g = cv2.split(img)[1]
r = np.zeros((rows,cols),dtype=img.dtype)
m = cv2.merge([b, g, r])

红色通道修改方法与上面类似。希望文章对大家有所帮助,如果有错误或不足之处,还请海涵。
本文摘录自eastmount X华为云开发者社区联合出品的电子书《从零到一 • Python图像处理及识别》。
点击免费下载电子书《从零到一 • Python图像处理及识别》
Python图像处理:如何获取图像属性、兴趣ROI区域及通道处理的更多相关文章
- 跟我学Python图像处理丨获取图像属性、兴趣ROI区域及通道处理
摘要:本篇文章主要讲解Python调用OpenCV获取图像属性,截取感兴趣ROI区域,处理图像通道. 本文分享自华为云社区<[Python图像处理] 三.获取图像属性.兴趣ROI区域及通道处理 ...
- Python 图像处理 OpenCV (3):图像属性、图像感兴趣 ROI 区域及通道处理
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 图像属性 图像 ...
- Python 图像处理 OpenCV (10):图像处理形态学之顶帽运算与黑帽运算
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (15):图像轮廓
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (5):图像的几何变换
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (6):图像的阈值处理
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (7):图像平滑(滤波)处理
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
- Python 图像处理 OpenCV (9):图像处理形态学开运算、闭运算以及梯度运算
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...
随机推荐
- 简述 Mybatis 的插件运行原理,以及如何编写一个插件。
Mybatis 仅可以编写针对 ParameterHandler.ResultSetHandler. StatementHandler.Executor 这 4 种接口的插件,Mybatis 使用 J ...
- window10使用putty传输文件到Linux服务器
由于Linux和Linux可以使用scp进行传输文件,而window系统无法向Linux传输文件,当然,有xshell等等类似的工具可以进行操作:putty工具就可以实现,毕竟zip压缩包也不大,启动 ...
- 学习k8s(二)
kubernetes-国内拉取gcr.io\quay.io镜像方法 方法1: https://hub.docker.com/r/ibmcom/ 例如: gcr.io/google_containers ...
- ImportError: No module named 'Tkinter' [closed]
跑maskrcnn报错:UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot sh ...
- Python模块导入方式
import导入方式 from...import导入方式 from...import... 导入模块相当于在此文件中写了所导入函数名(对比c/c++中的.h文件来理解),所以在之后使用导入的函数直接 ...
- 记一次曲折的CVE-2018-1270复现分析
前言 前两天接到朋友对某个授权目标的漏扫结果,也算是初次接触到这个漏洞,就想着顺手分析一下复现一下,因为分析这个漏洞的文章也比较少,所以刚开始比较迷,进度也比较慢. 漏洞复现 使用vulhub搭建环境 ...
- Android修改app图标
1.按照路径找到AndroidManifest.xml中的icon 2.在drawable添加一个png图片 3.然后在AndroidManifest.xml中的icon,修改其中的值 android ...
- Spring Boot之注册servlet三大组件
由于Spring Boot默认是以jar包的形式启动嵌入式的Servlet容器来启动Spring Boot的web应用是,没有web.xml配置文件 注册三大组件用以下方式 ServletRegist ...
- SpringMVC-获得Restful风格的参数
使用@PathVariable注解:接收请求路径中占位符的值 @RequestMapping("/report18/{username}") @ResponseBody publi ...
- linux的时钟中断需要两个全局变量,分别是xtime与jiffies。
linux的时钟中断的两个内核全局变量,分别是xtime与jiffies. 1.xtime一个timeval结构类型变量,是从cmos电路(rtc)中取得的时间,一般是从某一历史时刻开始到现在的时间, ...