NYOJ 1067 Compress String(区间dp)
Compress String
- 描写叙述
-
One day,a beautiful girl ask LYH to help her complete a complicated task—using a new compression method similar to Run Length Encoding(RLE) compress a string.Though the task is difficult, LYH is glad to help her.The compress rules of the new method is as follows: if a substring S is repeated k times, replace k copies of S by k(S). For example, letsgogogo is compressed into lets3(go). The length of letsgogogo is
10, and the length of lets3(go) is 9. In general, the length of k(S) is (number of digits in k ) + (length of S) + 2. For example, the length of 123(abc) is 8. It is also possible that substring S
is a compressed string. For example nowletsgogogoletsgogogoandrunrunrun could be compressed as now2(lets3(go))and3(run).In order to make the girl happy, LYH solved the task in a short time. Can you solve it?- 输入
- Thera are multiple test cases.
Each test case contains a string, the length of the string is no more than 200, all the character is lower case alphabet. - 输出
- For each test case, print the length of the shortest compressed string.
- 例子输入
-
ababcd
letsgogogo
nowletsgogogoletsgogogoandrunrunrun - 例子输出
-
6
9
24 -
题意:给出一个长度不超过200的字符串。把这个字符串依照一定规则压缩,即能够把几个连续的同样子串压缩成一个串,比如能够把letsgogogo压缩为lets3(go),压缩后的子串假设还能够继续压缩。则能够继续压缩,如能够将nowletsgogogoletsgogogoandrunrunrun压缩为now2(lets3(go))and3(run)。问经过压缩后这个字符串的最短长度是多少。
-
分析: 区间DP,dp[i][j]表示从i到j的字符串表示的最短长度。
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k + 1][j])。
然后去推断当前子串能不能压缩。即是否由反复字符串组成,推断时仅仅需暴力枚举反复长度,去推断就可以。
假设当前子串能够压缩,则dp[i][j] = min(dp[i][j], dp[i][i + len - 1] + 2 + digcount((j - i + 1) / len));。注意假设是数字,要用数字的位数表示添加的个数。而不是单纯的添加1.
-
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 210;
#define INF 0x3fffffff
char str[N];
int n, dp[N][N]; int digit_cnt(int x)
{
int a = 0;
while(x) {
a++;
x /= 10;
}
return a;
} bool check(int l, int r, int len)
{
if((r - l + 1) % len) return false;
for(int i = l; i < l + len; i++) {
for(int j = i + len; j <= r; j += len)
if(str[i] != str[j]) return false;
}
return true;
} int get_ans()
{
int i, j, k;
n = strlen(str+1);
for(i = 1; i <= n; i++) dp[i][i] = 1;
for(i = n - 1; i >= 1; i--) {
for(j = i + 1; j <= n; j++) {
dp[i][j] = INF;
for(k = i; k < j; k++)
dp[i][j] = min(dp[i][j], dp[i][k] + dp[k+1][j]);
for(int len = 1; len <= j-i+1; len++) {
if(check(i, j, len)) {
dp[i][j] = min(dp[i][j], dp[i][i+len-1] + 2 + digit_cnt((j - i + 1) / len));
}
}
}
}
return dp[1][n];
} int main()
{
while(~scanf("%s", str+1)) {
printf("%d\n", get_ans());
}
return 0;
}
NYOJ 1067 Compress String(区间dp)的更多相关文章
- Codeforces Round #354 (Div. 2)-C. Vasya and String,区间dp问题,好几次cf都有这种题,看来的好好学学;
C. Vasya and String time limit per test 1 second memory limit per test 256 megabytes input standard ...
- nyoj 460 项链 (区间dp)
项链 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 在Mars星球上,每个Mars人都随身佩带着一串能量项链.在项链上有N颗能量珠.能量珠是一颗有头标记与尾标记的珠子, ...
- codeforces#1120C. Compress String(dp+后缀自动机)
题目链接: https://codeforces.com/contest/1120/problem/C 题意: 从前往后压缩一段字符串 有两种操作: 1.对于单个字符,压缩它花费$a$ 2.对于末尾一 ...
- eduCF#61 F. Clear the String /// 区间DP 消除连续一段相同字符 全部消完的最少次数
题目大意: 给定字符串 每次消除可消除连续的一段相同的字符的子串 求消除整个字符串的最少消除次数 #include <bits/stdc++.h> using namespace std; ...
- hdu2476 String painter(区间dp)
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=2476 Problem Description There are two strings ...
- nyoj 737 石子合并(一)。区间dp
http://acm.nyist.net/JudgeOnline/problem.php?pid=737 数据很小,适合区间dp的入门 对于第[i, j]堆,无论你怎么合并,无论你先选哪两堆结合,当你 ...
- NYOJ 题目15 括号匹配(二)(区间DP)
点我看题目 题意 : 中文题不详述. 思路 : 本来以为只是个小模拟,没想到是个区间DP,还是对DP不了解. DP[i][j]代表着从字符串 i 位置到 j 位置需要的最小括号匹配. 所以初始化的DP ...
- [CF1107E]Vasya and Binary String【区间DP】
题目描述 Vasya has a string s of length n consisting only of digits 0 and 1. Also he has an array a of l ...
- HDU2476 String painter——区间DP
题意:要把a串变成b串,每操作一次,可以使a串的[l,r]区间变为相同的一个字符.问把a变成b最少操作几次. 这题写法明显是区间dp ,关键是处理的方法. dp[l][r]表示b串的l~r区段至少需要 ...
随机推荐
- Android开发——ThreadLocal功能介绍
个静态的监听器对象,显然是无法接受的. 2. 使用实例 //首先定义一个ThreadLocal对象,选择泛型为Boolean类型 private ThreadLocal<Boolean> ...
- webforms字典参数处理
当webforms参数中的value是一个字典时,加上‘’即可正常传参.
- Python内置函数(4)
Python内置函数(4) 1.copyright 交互式提示对象打印许可文本,一个列表贡献者和版权声明 2.credits 交互式提示对象打印许可文本,一个贡献者和版权声明的列表 3.delattr ...
- apache2虚拟主机实现一个服务器绑定多个域名
1.apache2的配置 首先要配置好apache2,如果未配置,请参考我之前的博文:lamp的配置 2.域名的解析 将全部域名的www和@的A记录解析到云服务器的IP 3.虚拟主机的配置 1.配置h ...
- js对文字进行编码
js对文字进行编码涉及3个函数:escape,encodeURI,encodeURIComponent,相应3个解码函数:unescape,decodeURI,decodeURIComponent 1 ...
- EasyUI 加载Tree
function LoadTree(result) { mainMenu = $('#mainMenu').tree({ url: "/ajax/GetTreeJson.ashx" ...
- xmpp 环境配置
XMPP框架地址:http://xmpp.org/xmpp-software/libraries/ 配置流程
- cf3D Least Cost Bracket Sequence
This is yet another problem on regular bracket sequences. A bracket sequence is called regular, if b ...
- Centos 安装Python3的方法
由于centos7原本就安装了Python2,而且这个Python2不能被删除,因为有很多系统命令,比如yum都要用到. [root@VM_105_217_centos Python-3.6.2]# ...
- android悬浮窗口的一些说明
1.xml文件里的权限申请 <uses-permission android:name="android.permission.SYSTEM_OVERLAY_WINDOW" ...