题目大意:

判断是否能根据给定的规则将这一串数字准确排序出来

我们用小的数指向大的数

对于相等的情况下,将二者合并到同一个并查集中,最后抽象出来的图上面的每一个点都应该代表并查集的标号

 #include <cstdio>
#include <cstring>
#include <stack>
#include <iostream>
using namespace std; #define N 10005
char s[N<<][];
int fa[N] , first[N] , in[N] , k , cnt;//fa[i]保存的是i点处于的并查集号,cnt记录最后剩下的并查集数
bool vis[N];//判断对应下标的集合是否会进入最后生成的图中
struct Edge{
int y,next;
}e[N<<]; void add_edge(int x,int y)
{
in[y]++;
e[k].y = y , e[k].next=first[x];
first[x] = k++;
} void init(int n)
{ k=;
memset(first , - , sizeof(first));
memset(in,,sizeof(in));
for(int i=;i<n;i++)
fa[i] = i , vis[i] = true;
} int find_fa(int x)
{
while(x!=fa[x])
x=fa[x];
return x;
} void Union(int a , int b)
{
int fa1_set = find_fa(a);
int fa2_set = find_fa(b);
if(fa1_set != fa2_set)
{
fa[fa2_set] = fa1_set , cnt--;
vis[fa2_set] = false; //fa2_set集合被合并,所以最后不会进入图中,所以将其舍去
}
} int tuopu(int n)
{
stack<int> s;
for(int i = ; i<n ; i++){
if(vis[i] && !in[i]) s.push(i);
}
int flag = ;
for(int i= ; i<cnt ; i++){
if(s.empty()) return -;
if(s.size() > ) flag = ;
int u = s.top();
s.pop();
for(int j=first[u] ; j!=- ; j=e[j].next){
int v = e[j].y;
in[v]--;
if(!in[v]){
s.push(v);
}
}
}
if(!flag) return ;
return ;
} int main()
{
// freopen("a.in" , "rb" ,stdin);
int n , m , a[N] , b[N];
while(scanf("%d%d",&n,&m)!=EOF)
{
init(n);
cnt = n; for(int i=;i<m;i++){
scanf("%d%s%d",&a[i],s[i],&b[i]);
if(s[i][] == '='){
Union(a[i],b[i]);
}
}
//cout<<"cnt: "<<cnt<<endl;
for(int i = ; i<m ; i++){
int fa1 = find_fa(a[i]);
int fa2 = find_fa(b[i]);
if(s[i][] == '<'){
add_edge(fa1 , fa2);
}
else if(s[i][] == '>'){
add_edge(fa2 , fa1);
}
}
int flag = tuopu(n);
if(flag == ) puts("OK");
if(flag == -) puts("CONFLICT");
if(flag == ) puts("UNCERTAIN");
}
return ;
}

HDU1811 并查集+拓扑排序的更多相关文章

  1. 并查集+拓扑排序 赛码 1009 Exploration

    题目传送门 /* 题意:无向图和有向图的混合图判环: 官方题解:首先对于所有的无向边,我们使用并查集将两边的点并起来,若一条边未合并之前, 两端的点已经处于同一个集合了,那么说明必定存在可行的环(因为 ...

  2. HDU 1811:Rank of Tetris(并查集+拓扑排序)

    http://acm.hdu.edu.cn/showproblem.php?pid=1811 Rank of Tetris Problem Description   自从Lele开发了Rating系 ...

  3. 【并查集+拓扑排序】【HDU1811】【Rank of Tetris】

    题意:给你3种关系 A=B,A>B,A<B 问是否排名方式唯一,或者存在矛盾 解 1.读入数据先处理 =号 用并查集的祖先作为代表元素,其他儿子节点都等于跟这个点重叠. 再读入 '< ...

  4. hdu1811 Rank of Tetris 并查集+拓扑排序

    #include <stdio.h> #include <string.h> #include <vector> #include <queue> us ...

  5. hdu 1811Rank of Tetris (并查集 + 拓扑排序)

    /* 题意:这些信息可能有三种情况,分别是"A > B","A = B","A < B",分别表示A的Rating高于B,等于B ...

  6. hdu1811 并查集+拓扑序

    题意:现在有一个排名系统,有一系列信息,分别是 > < = 的比较,而如果最终相等,就会将这些相等的按照序号从小到大排,问给出的信息是否可以确定完整的排序. 由于如果很多点相等,他们肯定能 ...

  7. Codeforces Round #541 (Div. 2) D(并查集+拓扑排序) F (并查集)

    D. Gourmet choice 链接:http://codeforces.com/contest/1131/problem/D 思路: =  的情况我们用并查集把他们扔到一个集合,然后根据 > ...

  8. Codeforces Round #541 (Div. 2) D 并查集 + 拓扑排序

    https://codeforces.com/contest/1131/problem/D 题意 给你一个n*m二维偏序表,代表x[i]和y[j]的大小关系,根据表构造大小分别为n,m的x[],y[] ...

  9. HDU 1811 Rank of Tetris(并查集+拓扑排序 非常经典)

    Rank of Tetris Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

随机推荐

  1. 转-MySQL for Mac 安装和基本操作

    一.安装mysql 1.mysql下载地址:http://dev.mysql.com/downloads/mysql/ 2.安装软件包位于硬盘映象(.dmg)文件中,必须首先双击搜索起中的图标来安装该 ...

  2. 228 Summary Ranges 汇总区间

    给定一个无重复元素的有序整数数组,返回数组中区间范围的汇总. 示例 1: 输入: [0,1,2,4,5,7]输出: ["0->2","4->5",& ...

  3. hbase源码分析:ERROR: Table already exists问题诊断

    问题描述: 重新安装了测试环境的hadoop,所以之前hbase所建的表数据都丢失了,但是zookeeper没有动.在hbase shell中list的时候,看不到之前建的表,但是create tes ...

  4. Jquery插件jqprint-0.3.js实现打印

    1.首先引用Jquery和jqprint-0.3.js(依赖于Jquery的) <script language="javascript" src="jquery- ...

  5. actuator服务实战

    1. actuator服务实战 1.1. 前言 actuator默认集成了很多端点查看,这里我会挑选也用到可能性大些的 1.2. Endpoints 1.2.1. 使用方式 开启服务后,直接访问:lo ...

  6. HTML5应用缓存与Web Workers

    1.什么是应用程序缓存      HTML5引入了应用程序缓存,这意味着web应用可进行缓存,并可在没有因特网链接时进行访问. 2.应用缓存的优势      离线浏览   用户可在应用离线时使用它们 ...

  7. negroni-gzip源码简单分析解读

    negroni-gzip源码简单分析解读 这是一个为Negroni设计的gzip压缩处理中间件,需要用到已有的compress中的gzip,阅读了不长的源码之后,总结了一些关键要点和注意点. 检查是否 ...

  8. 21全志r58m平台的framework在使用过程中会莫名的崩溃掉

    21全志r58m平台的framework在使用过程中会莫名的崩溃掉 2018/10/25 16:20 版本:V1.0 开发板:SC5806 1.系统编译: rootroot@cm88:/home/ww ...

  9. iOS Programming UINavigationController

    iOS Programming UINavigationController the Settings application has multiple related screens of info ...

  10. SceneAction$$FastClassByCGLIB$$7330f7b9.invoke(int, Object, Object[]) line: not available

    现象:在调试状态下,断点可以进入ACTION ,当调用service的时候,发现无法进入service中的断点,就报了题目中的错误. 过程:1.降低JDK.因为本工程是用JDK1.6编译的,maven ...