uva 1411 Ants (权值和最小的完美匹配---KM算法)
uva 1411 Ants
Description
Young naturalist Bill studies ants in school. His ants feed on plant-louses that live on apple trees. Each ant colony needs its own apple tree to feed itself.
Bill has a map with coordinates of n ant colonies and n apple trees. He knows that ants travel from their colony to their feeding places and back using chemically tagged routes. The routes cannot intersect each other or ants will get confused and get to the wrong colony or tree, thus spurring a war between colonies.
Bill would like to connect each ant colony to a single apple tree so that all n routes are non-intersecting straight lines. In this problem such connection is always possible. Your task is to write a program that finds such connection.
On this picture ant colonies are denoted by empty circles and apple trees are denoted by filled circles. One possible connection is denoted by lines.
Input
Input has several dataset. The first line of each dataset contains a single integer number n(1≤n≤100) – the number of ant colonies and apple trees. It is followed by n lines describing n ant colonies, followed by n lines describing n apple trees. Each ant colony and apple tree is described by a pair of integer coordinates x and y(- 10000≤x, y≤10000) on a Cartesian plane. All ant colonies and apple trees occupy distinct points on a plane. No three points are on the same line.
Output
For each dataset, write to the output file n lines with one integer number on each line. The number written on i -th line denotes the number (from 1 to n ) of the apple tree that is connected to the i i -th ant colony. Print a blank line between datasets.
Sample Input
5
-42 58
44 86
7 28
99 34
-13 -59
-47 -44
86 74
68 -75
-68 60
99 -60
Sample Output
4
2
1
5
3
题目大意:给出n个白点和黑点的坐标,要求用n条不相交的线段把它们连接起来。当中每条线段恰好连接一个白点和一个黑点,每一个点恰好连接到一条线段。
解题思路:点的坐标已经给出,那么点与点之间的距离就是它们的欧几里得距离(((x1−x2)2+(y1−y2)2)−−−−−−−−−−−−−−−−−−−−√事实上就是这个)。这题的难点在于,怎样解决线段之间不能相交的问题。增加线段(a,b)和(c,d)相交,那么一定有线段(a,c)和(b,d)的权值和小于它。所以为了满足权值和最小的完美匹配,匹配时是不会出现线段交叉的问题的。
怎样用权值和最大的完美匹配模板求权值和最小的完美匹配?有两种方法:
1)算距离时,把权值读为负数。
2)读入权值时,用一个非常大的数,减去全部的权值。记录的是减出来的差。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cstdlib>
using namespace std;
const int N = 205;
const int INF = 50005;
typedef long long ll;
int n;
double X1[N], Y1[N];
double X2[N], Y2[N];
double W[N][N];
double Lx[N], Ly[N];
int left[N];
bool S[N], T[N];
bool match(int i) {
S[i] = true;
for (int j = 1; j <= n; j++) {
if (fabs(Lx[i] + Ly[j] - W[i][j]) < 1e-9 && !T[j]) {
T[j] = true;
if (!left[j] || match(left[j])) {
left[j] = i;
return true;
}
}
}
return false;
}
void update() {
double a = INF;
for (int i = 1; i <= n; i++) {
if (!S[i]) continue;
for (int j = 1; j <= n; j++) {
if (T[j]) continue;
a = min(a, Lx[i] + Ly[j] - W[i][j]);
}
}
for (int i = 1; i <= n; i++) {
if (S[i]) Lx[i] -= a;
if (T[i]) Ly[i] += a;
}
}
void KM() {
for (int i = 1; i <= n; i++) {
left[i] = Lx[i] = Ly[i] = 0;
for (int j = 1; j <= n; j++) {
Lx[i] = max(Lx[i], W[i][j]);
}
}
for (int i = 1; i <= n; i++) {
while (1) {
for (int j = 1; j <= n; j++) S[j] = T[j] = 0;
if (match(i)) break;
else update();
}
}
}
double getDis(int x, int y) {
return sqrt(pow(X1[x] - X2[y], 2) + pow(Y1[x] - Y2[y], 2));
}
void input() {
for (int i = 1; i <= n; i++) {
scanf("%lf %lf", &X1[i], &Y1[i]);
}
for (int i = 1; i <= n; i++) {
scanf("%lf %lf", &X2[i], &Y2[i]);
}
}
void getW() {
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
W[j][i] = -getDis(i, j);
}
}
}
int main() {
while (scanf("%d", &n) != EOF) {
input();
getW();
KM();
for (int i = 1; i <= n; i++) {
printf("%d\n", left[i]);
}
}
return 0;
}
uva 1411 Ants (权值和最小的完美匹配---KM算法)的更多相关文章
- UVA 1411 - Ants(二分图完美匹配)
UVA 1411 - Ants 题目链接 题意:给定一些黑点白点,要求一个黑点连接一个白点,而且全部线段都不相交 思路:二分图完美匹配,权值存负的欧几里得距离,这种话,相交肯定比不相交权值小,所以做一 ...
- poj 3565 uva 1411 Ants KM算法求最小权
由于涉及到实数,一定,一定不能直接等于,一定,一定加一个误差<0.00001,坑死了…… 有两种事物,不难想到用二分图.这里涉及到一个有趣的问题,这个二分图的完美匹配的最小权值和就是答案.为啥呢 ...
- 【uva 1411 Ants蚂蚁们】
题目大意: ·给你一个n,表示输入n个白点和n个黑点(输入每一个点的坐标).现在需要将各个白点和各个黑点一一用线段连接起来,需要满足这些线段不能够相交. ·特色: 我们如何保证线段间不相交. ·分析: ...
- hdu 1853 Cyclic Tour (二分匹配KM最小权值 或 最小费用最大流)
Cyclic Tour Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/65535 K (Java/Others)Total ...
- uva 1411 Ants
题意: 一个平面上有n个黑色的点,n个白色的点,要求黑色的点与白色点之间一一配对,且线段之间不相交. 思路: 线段不相交并不好处理,想了很久想不出,所以看了蓝书的讲解. 一个很明显的结论是,不相交的线 ...
- 非负权值有向图上的单源最短路径算法之Dijkstra算法
问题的提法是:给定一个没有负权值的有向图和其中一个点src作为源点(source),求从点src到其余个点的最短路径及路径长度.求解该问题的算法一般为Dijkstra算法. 假设图顶点个数为n,则针对 ...
- ACM学习历程—POJ3565 Ants(最佳匹配KM算法)
Young naturalist Bill studies ants in school. His ants feed on plant-louses that live on apple trees ...
- HDU2255-奔小康赚大钱-二分图最大权值匹配-KM算法
二分图最大权值匹配问题.用KM算法. 最小权值的时候把权值设置成相反数 /*-------------------------------------------------------------- ...
- 二分图带权匹配 KM算法与费用流模型建立
[二分图带权匹配与最佳匹配] 什么是二分图的带权匹配?二分图的带权匹配就是求出一个匹配集合,使得集合中边的权值之和最大或最小.而二分图的最佳匹配则一定为完备匹配,在此基础上,才要求匹配的边权值之和最大 ...
随机推荐
- java SSL 邮件发送
Properties props = new Properties(); props.put("mail.smtp.host", smtp); props.put("ma ...
- vuex相关的知识
vue的核心是store,它可以看作是一个容器,它包含着应用中的状态state(state,mutations,actions,getters, modules).它中的存储是响应式的,当store中 ...
- python3安装opencv及电子书籍(百度云)
不能直接 pip install opencv 正解: pip install opencv-python 记得:请确保网络良好!!!!! (1)这个是我学习的电子书籍:opencv-python ...
- CAD参数绘制线型标注(网页版)
主要用到函数说明: _DMxDrawX::DrawDimRotated 绘制一个线型标注.详细说明如下: 参数 说明 DOUBLE dExtLine1PointX 输入第一条界线的起始点X值 DOUB ...
- django显示图片
dirctory vickey_django vickey(projectname) vickey __init__.py __pycache__ settings.py urls.py wsgi.p ...
- Bootstrap 12 栅格系统
栅格系统简介 Bootstrap 提供了一套响应式.移动设备优先的流式栅格系统,随着屏幕或视口(viewport)尺寸的增加,系统会自动分为最多 12 列.它包含了易于使用的预定义类,还有强大的mix ...
- PHP实现定时任务的几种方式
关于定时任务,之前以前认识了一种最常用的:crontab定时任务.通过linux的定时任务去实现.今天又认识了一下php实现定时方式的其它方式,总结一下. 一 服务器定时任务 服务器定时任务,其实就是 ...
- python爬取百度文库所有内容
转载自 GitHub 的 Jack-Cherish 大神 基本环境配置 版本:python3 系统:Windows 相关模块: import requests import re import jso ...
- MyBaties异常之 ORA-00918: 未明确定义列
原因: 如果a表与b表连接,且a与b中存在两个相同的字段,则必须指明字段是哪个表的 箭头所致位置没有指定ROOM_ID为那个表的,应修改为t1.ROOM_ID
- Poj 1106 Transmitters
Poj 1106 Transmitters 传送门 给出一个半圆,可以任意旋转,问这个半圆能够覆盖的最多点数. 我们枚举每一个点作为必然覆盖点,那么使用叉积看极角关系即可判断其余的点是否能够与其存在一 ...