传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2002

这一题除了LCT解法,还有一种更巧妙,代码量更少的解法,就是分块。先想,如果仅仅记录每个节点需要几步可以弹飞,就可以做到O(1)查询O(n)修改;如果仅仅记录每个节点弹力洗漱,就可以做到O(n)查询O(1)修改。这会不会给人一种随机访问数组与链表的感觉呢?如果把n个弹簧分成√n块,记录块里每个弹簧需要几步才能跳出这一个块,并且记录跳出这个块后落到了哪,这样子查询以及修改复杂度都是O(√n)了。

#include <cstdio>
#include <cmath> const int maxn = 200005; int n, m, a[maxn], t1, t2, t3, siz, zuihou, kaishi, to[maxn], stp[maxn]; inline int qry(int pos) {
int rt = 0;
while (~pos) {
rt += stp[pos];
pos = to[pos];
}
return rt;
}
inline void upd(int pos, int data) {
kaishi = pos / siz * siz;
zuihou = (pos / siz + 1) * siz - 1;
a[pos] = data;
for (int i = pos; i >= kaishi; --i) {
if (i + a[i] >= n) {
to[i] = -1;
stp[i] = 1;
}
else if (i + a[i] > zuihou) {
to[i] = i + a[i];
stp[i] = 1;
}
else {
to[i] = to[i + a[i]];
stp[i] = stp[i + a[i]] + 1;
}
}
} int main(void) {
//freopen("in.txt", "r", stdin);
scanf("%d", &n);
siz = (int)sqrt((float)n + 0.5f);
for (int i = 0; i < n; ++i) {
scanf("%d", a + i);
}
for (int i = n - 1; ~i; --i) {
zuihou = (i / siz + 1) * siz - 1;
if (i + a[i] >= n) {
to[i] = -1;
stp[i] = 1;
}
else if (i + a[i] > zuihou) {
to[i] = i + a[i];
stp[i] = 1;
}
else {
to[i] = to[i + a[i]];
stp[i] = stp[i + a[i]] + 1;
}
}
scanf("%d", &m);
while (m--) {
scanf("%d%d", &t1, &t2);
if (t1 == 1) {
printf("%d\n", qry(t2));
}
else {
scanf("%d", &t3);
upd(t2, t3);
}
}
return 0;
}

  

bzoj2002 [Hnoi2010]Bounce 弹飞绵羊【分块】的更多相关文章

  1. bzoj2002: [Hnoi2010]Bounce 弹飞绵羊 [分块][LCT]

    Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置 ...

  2. [bzoj2002][Hnoi2010]Bounce弹飞绵羊——分块

    Brief description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装 ...

  3. bzoj2002 [Hnoi2010]Bounce 弹飞绵羊——分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2002 第一次用分块,感觉超方便啊: 如果记录每个点的弹力系数,那么是O(1)修改O(n)查询 ...

  4. bzoj2002: [Hnoi2010]Bounce 弹飞绵羊 分块

    这个题体现了分块不只是最大值最小值众数次数,而是一种清真的思想. 我们把整个序列分块,在每个块里处理每个位置跳出这个块的次数和跳出的位置,那么每次修改n0.5,每次查询也是,那么O(m* n0.5)的 ...

  5. BZOJ2002 Hnoi2010 Bounce 弹飞绵羊 【LCT】【分块】

    BZOJ2002 Hnoi2010 Bounce 弹飞绵羊 Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始, ...

  6. 【bzoj2002】[Hnoi2010]Bounce 弹飞绵羊 分块

    [bzoj2002][Hnoi2010]Bounce 弹飞绵羊 2014年7月30日8101 Description 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀 ...

  7. BZOJ 2002: [Hnoi2010]Bounce 弹飞绵羊 分块

    2002: [Hnoi2010]Bounce 弹飞绵羊 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOn ...

  8. [bzoj2002][Hnoi2010]Bounce弹飞绵羊_LCT

    Bounce弹飞绵羊 bzoj-2002 Hnoi-2010 题目大意:n个格子,每一个格子有一个弹簧,第i个格子会将经过的绵羊往后弹k[i]个,达到i+k[i].如果i+k[i]不存在,就表示这只绵 ...

  9. 【BZOJ2002】 [Hnoi2010]Bounce 弹飞绵羊 分块/LCT

    Description 某天,Lostmonkey发明了一种超级弹力装置,为了在 他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装 ...

随机推荐

  1. 跟着9张思维导图学JavaScript

    思维导图小tips 思维导图又叫心智图,是表达发射性思维的有效的图形思维工具 ,它简单却又极其有效,是一种革命性的思维工具.思维导图运用图文并重的技巧,把各级主题的关系用相互隶属与相关的层级图表现出来 ...

  2. 推荐-zabbix原理篇

    推荐-zabbix原理篇(1) 提交 我的留言 加载中 已留言 本文大纲 snmp介绍 监控流程 开源监控工具zabbix zabbix监控功能的实现 支持数据库存储类型 Zabbix架构中的组件 Z ...

  3. MySQL 资源大全

    干货!MySQL 资源大全 提交 我的留言 加载中 已留言 shlomi-noach 发起维护的 MySQL 资源列表,内容覆盖:分析工具.备份.性能测试.配置.部署.GUI 等. 伯乐在线已在 Gi ...

  4. python第四讲

    三元运算符: 三元运算又叫三目运算,是对简单的条件语句的缩写. 书写格式: n1 = 值1 if 条件 else 值2 # 如果条件成立,那么将 “值1” 赋值给n1变量,否则,将“值2”赋值给n1变 ...

  5. C# 性能优化 之 秒表 Stopwatch。 Dapper一个和petapoco差不多的轻量级ORM框架

    Sweet小马 小马同学的编程日记. C# 性能优化 之 秒表 Stopwatch. 生词解释:Diagnostics[,daɪəg'nɑstɪks] n.诊断学 using System.Diagn ...

  6. Android 使用 DownloadManager 管理系统下载任务的方法

    在红黑联盟上看到的.这几天一直考虑做一个Notification 的带下载功能的自己定义通知.但没搞出来.无意中在论坛看到这个.先Mark,明天试试. 从Android 2.3(API level 9 ...

  7. HDOJ 4455 Substrings 递推+树状数组

    pre[i]第i位数往前走多少位碰到和它同样的数 dp[i]表示长度为i的子串,dp[i]能够由dp[i-1]加上从i到n的pre[i]>i-1的数减去最后一段长度为i-1的断中的不同的数得到. ...

  8. csv读入数据,用julia/matplotlib/pyplot 画矢量图导入word中

    这是是用julia来实现画图.julia有三个画图库:Winston.Gadfly.PyPlot 这里用的是pyplot,事实上他是基于matplotlib的 1.首先在juno里安装两个库 juno ...

  9. C语言变长数组data[0]总结

    C语言变长数组data[0] 1.前言 今天在看代码中遇到一个结构中包含char data[0],第一次见到时感觉很奇怪,数组的长度怎么可以为零呢?于是上网搜索一下这样的用法的目的,发现在linux内 ...

  10. Android 4.4.2 动态加入JNI库方法记录 (二 app应用层)

    欢迎转载,务必注明出处:http://blog.csdn.net/wang_shuai_ww/article/details/44458553 源代码下载地址:http://download.csdn ...