[bzoj3527][Zjoi2014]力_FFT
力 bzoj-3527 Zjoi-2014
题目大意:给定长度为$n$的$q$序列,定义$F_i=\sum\limits_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum\limits_{i>j}\frac{q_iq_j}{(i-j)^2}$。求所有的$E_i=\frac{F_i}{q_i}$。
注释:$1\le n\le 10^5$,$0\le q\le 10^9$。
想法:我们可以把$F_i$中每一项上的$q_i$删掉因为我们求得$E_i$除掉了。
进而我们考虑如何求解$F$。
先看$j<i$的部分
$F_i=\sum\limits_{j=0}^{i-1} \frac{q_j}{(i-j)^2}$。
设$p(x)=\frac{1}{x^2}$。
所以$F_i=\sum\limits_{j=0}^{i-1} q_j\cdot p_{i-j}$。
紧接着我们强制令$p_0=0$,$F_i=\sum\limits_{j=0}^i q_j\cdot p_{i-j}$,可以用$FFT$加速。
接下来看$i<j$的部分。
此时$F_i=\sum\limits_{j=i+1}^{n-1} q_j\cdot p_{j-i}$。
像bzoj2194一样,这时我们将$p$序列翻转,仍然可以用$FFT$加速。
之后把这两部分加一起即可。
Code:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define N 100010
using namespace std; typedef double db;
const db pi=acos(-1);
db E[N<<2],q[N<<2],p[N<<2];
struct cp
{
db x,y;
cp() {x=y=0;}
cp(db x_,db y_) {x=x_,y=y_;}
cp operator + (const cp &a) const {return cp(x+a.x,y+a.y);}
cp operator - (const cp &a) const {return cp(x-a.x,y-a.y);}
cp operator * (const cp &a) const {return cp(x*a.x-y*a.y,x*a.y+y*a.x);}
}a[N<<2],b[N<<2],c[N<<2],d[N<<2];
void fft(cp *a,int len,int flg)
{
int i,j,k,t;
cp tmp,w,wn;
for(i=k=0;i<len;i++)
{
if(i>k) swap(a[i],a[k]);
for(j=len>>1;(k^=j)<j;j>>=1);
}
for(k=2;k<=len;k<<=1)
{
wn=cp(cos(2*pi*flg/k),sin(2*pi*flg/k));
t=k>>1;
for(i=0;i<len;i+=k)
{
w=cp(1,0);
for(j=i;j<i+t;j++)
{
tmp=a[j+t]*w;
a[j+t]=a[j]-tmp;
a[j]=a[j]+tmp;
w=w*wn;
}
}
}
if(flg==-1) for(i=0;i<len;i++) a[i].x/=len;
}
int main()
{
int n; cin >> n ; for(int i=0;i<n;i++) scanf("%lf",&q[i]);
for(int i=1;i<=n;i++) p[i]=(double)(1)/(1ll*i*i); p[0]=0;
for(int i=0;i<n;i++) a[i].x=c[i].x=q[i];
for(int i=0;i<n;i++) b[i].x=d[n-i-1].x=p[i];
int len=1; while(len<=(n<<1)) len<<=1;
fft(a,len,1); fft(b,len,1);
for(int i=0;i<len;i++) a[i]=a[i]*b[i];
fft(a,len,-1);
for(int i=0;i<n;i++) E[i]=a[i].x;
fft(c,len,1); fft(d,len,1);
for(int i=0;i<len;i++) c[i]=c[i]*d[i];
fft(c,len,-1);
for(int i=0;i<n;i++) E[i]-=c[n+i-1].x;
for(int i=0;i<n;i++) printf("%.3lf\n",E[i]);
return 0;
}
小结:对于这两种形式可以用$FFT$加速应该熟练掌握。
[bzoj3527][Zjoi2014]力_FFT的更多相关文章
- bzoj3527: [Zjoi2014]力 fft
bzoj3527: [Zjoi2014]力 fft 链接 bzoj 思路 但是我们求得是 \(\sum\limits _{i<j} \frac{q_i}{(i-j)^2}-\sum_{i> ...
- bzoj3527: [Zjoi2014]力
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #i ...
- BZOJ3527[Zjoi2014]力——FFT
题目描述 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. n≤100000,0<qi<100000 ...
- bzoj3527: [Zjoi2014]力 卷积+FFT
先写个简要题解:本来去桂林前就想速成一下FFT的,结果一直没有速成成功,然后这几天断断续续看了下,感觉可以写一个简单一点的题了,于是就拿这个题来写,之前式子看着别人的题解都不太推的对,然后早上6点多推 ...
- 2019.02.28 bzoj3527: [Zjoi2014]力(fft)
传送门 fftfftfft菜题. 题意简述:给一个数列aia_iai,对于i=1→ni=1\rightarrow ni=1→n求出ansi=∑i<jai(i−j)2−∑i>jai(i−j ...
- BZOJ3527 [Zjoi2014]力 【fft】
题目 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 输入格式 第一行一个整数n. 接下来n行每行输入一个数,第i行表示qi. 输出格式 n行,第i行输出Ei.与标准答案误差不超过 ...
- bzoj千题计划167:bzoj3527: [Zjoi2014]力
http://www.lydsy.com/JudgeOnline/problem.php?id=3527 给出n个数qi,给出Fj的定义如下: 令Ei=Fi/qi,求Ei. 以n=4为例: ...
- [BZOJ3527][ZJOI2014]力 FFT+数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=3527 首先卷积的形式是$h(i)=\sum_{i=0}^jf(i)g(i-j)$,如果我们 ...
- [BZOJ3527][ZJOI2014]力:FFT
分析 整理得下式: \[E_i=\sum_{j<i}{\frac{q_i}{(i-j)^2}}-\sum_{j>i}{\frac{q_i}{(i-j)^2}}\] 假设\(n=5\),考虑 ...
随机推荐
- AJPFX解析Java关键字之assert
Java有许多关键字,但是这个关键字估计很少有人了解,今天就跟大家谈一谈这个关键字吧. 先说明一下,这个关键字开发中用的极少,感兴趣的朋友可以了解一下. 一.概述 在C和C++语言中都有assert关 ...
- AJPFX关于异常和file类的总结
/** * 各位坛友注意啦!对我这个帖子有任何的疑惑的,可以尽管留帖提问,我会在看到的第一时间回贴,既然写得出这帖子,* 就要对看这帖子的人负责,所以有问题,尽管问!* * * 这块没学好的同学,可以 ...
- 从java toBinaryString() 看计算机数值存储方式(原码、反码、补码)
一.toBinaryString 方法及其含义 1.1 方法说明 该方法位于java.lang.Integer类中 方法签名:public static String toBinaryString(i ...
- [BZOJ1192][HNOI2006]鬼谷子的钱袋 数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1192 大水题,把m分成二的幂次方和. #include<cstdio> #in ...
- Nginx server_name 正则泛域名反向代理两例
最近在学习Nginx搭建负载均衡系统,感觉系统部署方式的思路瞬间开阔了很多. 负载均衡服务器的后端服务器上各自有一套功能相同的WEB管理系统,主要作用是方便的对各自服务器的IIS站点及服务器防火墙测量 ...
- [Android]AndroidDesign中ActionBar探究2 嵌入Fragment
上一节我们只是简单了介绍了Android Design风格中的ActionBar的简单实用,如添加MenuItem,这节我们会进一步了解ActionBar的其他功能. 在Android Develop ...
- 分析HTTP 2.0与HTTP 1.1区别
1.什么是HTTP 2.0 HTTP/2(超文本传输协议第2版,最初命名为HTTP 2.0),是HTTP协议的的第二个主要版本,使用于万维网.HTTP/2是HTTP协议自1999年HTTP 1.1发布 ...
- 经典问题——输出n对括号的所有组合
问题 n对括号有多少种合法的组合,比如两对括号可以有两种:()()和(()) 思路 问题等价为:在一个字符串中包含两种字符:'('和')',他们出现的次数都为n,并且任何时候'('出现的次数总是大于或 ...
- torch.nn.Embedding理解
Pytorch官网的解释是:一个保存了固定字典和大小的简单查找表.这个模块常用来保存词嵌入和用下标检索它们.模块的输入是一个下标的列表,输出是对应的词嵌入. torch.nn.Embedding(nu ...
- 微信小程序(template的使用)
小程序的template是一个模版功能,在创建一个template后,其他的页面可以引用,相比component较简单.方便! template只需要两个文件,一个wxss文件和wxml文件,也只有这 ...