https://vjudge.net/contest/171652#problem/J

【题意】

问有多少个正整数对(x,y),使得存在正整数p,q满足

1 <= T <= 15

1 <= M <= 800,000

【思路】

  • M最多8e5,所以考虑枚举x,只有1e3个
  • 对于某个x,有多少对(x,y)其实就是看m-p*x*x有多少个不同的因子(需要去重)
  • 我们可以预处理1~8e5的每个数的所有因子(mlogm)
  • 分别枚举x,p,对所有m-p*x*x的因子去重,因为最大是因子8e5,所以可以开一个数组去重
  • 总的时间复杂度就是O(mlogm)+O(m*240)=O(mlogm)
  • m+m/4+m/9......是线性的,所有数的因子最多是240个左右

【Accepted】

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<algorithm>
#include<queue>
#include<set>
#include<vector>
using namespace std;
typedef long long ll;
const ll mod=1e9+;
const int maxn=8e5+;
set<int> s[maxn];
set<int>::iterator it;
vector<int> v[maxn];
bool vis[maxn];
int n;
void init()
{ for(int i=;i<maxn;i++)
{
for(int j=i;j<maxn;j+=i)
{
v[j].push_back(i);
}
}
int mmax=;
for(int i=;i<maxn;i++)
{
int sz=v[i].size();
mmax=max(mmax,sz);
}
cout<<mmax<<endl;
}
int main()
{
init();
int T;
scanf("%d",&T);
while(T--)
{ scanf("%d",&n);
int cnt=;
for(int i=;i<n;i++)
{
memset(vis,false,sizeof(vis));
int x=i*i;
if(x>=n) break;
for(int j=;j<n;j++)
{
if(x*j>=n) break;
int y=n-x*j;
for(int k=;k<v[y].size();k++)
{
if(!vis[v[y][k]])
{
vis[v[y][k]]=true;
cnt++;
}
}
}
}
printf("%d\n",cnt);
}
return ;
}

【教训】

一开始T了是因为,为了去重所有容器都用了set,这样复杂度就带了logn

而vector的push_back是O(1)的

【数学+枚举】OpenJ_POJ - C17J Pairs的更多相关文章

  1. bzoj 1257: [CQOI2007]余数之和sum 数学 && 枚举

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 1779  Solved: 823[Submit][Sta ...

  2. 2-08. 用扑克牌计算24点(25) (ZJU_PAT 数学 枚举)

    题目链接:http://pat.zju.edu.cn/contests/ds/2-08 一副扑克牌的每张牌表示一个数(J.Q.K分别表示11.12.13,两个司令都表示6).任取4张牌.即得到4个1~ ...

  3. The Golden Age CodeForces - 813B (数学+枚举)

    Unlucky year in Berland is such a year that its number n can be represented as n = xa + yb, where a  ...

  4. Codeforces 813B The Golden Age(数学+枚举)

    题目大意:如果一个数t=x^a+y^b(a,b都是大于等于0的整数)那就是一个unlucky数字.给你x,y,l,r(2 ≤ x, y ≤ 10^18, 1 ≤ l ≤ r ≤ 10^18),求出l到 ...

  5. FZU 2125 简单的等式 【数学/枚举解方程式】

    现在有一个等式如下:x^2+s(x,m)x-n=0.其中s(x,m)表示把x写成m进制时,每个位数相加的和.现在,在给定n,m的情况下,求出满足等式的最小的正整数x.如果不存在,请输出-1. Inpu ...

  6. CodeForce-813B The Golden Age(数学+枚举)

    The Golden Age CodeForces - 813B 题目大意:如果一个数t=x^a+y^b(a,b都是大于等于0的整数)那就是一个unlucky数字.给你x,y,l,r(2 ≤ x, y ...

  7. cf Round 603

    A.Alternative Thinking(思维) 给出一个01串,你可以取反其中一个连续子串,问取反后的01子串的最长非连续010101串的长度是多少. 我们随便翻一个连续子串,显然翻完之后,对于 ...

  8. BZOJ_1406_[AHOI2007]密码箱_枚举+数学

    BZOJ_1406_[AHOI2007]密码箱_枚举+数学 Description 在一次偶然的情况下,小可可得到了一个密码箱,听说里面藏着一份古代流传下来的藏宝图,只要能破解密码就能打开箱子,而箱子 ...

  9. [CF1244C] The Football Season【数学,思维题,枚举】

    Online Judge:Luogu,Codeforces Round #592 (Div. 2) C Label:数学,思维题, 枚举 题目描述 某球队一共打了\(n\)场比赛,总得分为\(p\), ...

随机推荐

  1. qconshanghai2017

    https://2017.qconshanghai.com/schedule 第一天 (2017/10/17 星期二) 时间 日程 07:45-09:00 签到 上午 主题演讲 软件质量优化与平台创新 ...

  2. P1309 瑞士轮 未完成 60

    题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公平,偶然性较低,但比赛过程往往十分 ...

  3. php中include_path配置

    在php.ini中可配置include_path来达到在任何文件中都可以直接引入该目录下文件 include_path = ".:/usr/share/php:/var/www/phpxwl ...

  4. 两个已排序数组的合并-C语言

    最近在纸上写一个已排序数组的合并时,花了超过预期的时间.仔细想想,这种要放到毕业找工作那会两下就出来了,原因还在于工作后对基础没有重视,疏于练习. 说开一点,现在搜索引擎的发达确实给问题的解决带来了便 ...

  5. python * urllib_urlopen( )

    python * urllib_urlopen( ) Python urllib 库提供了一个从指定的 URL 地址获取网页数据,然后对其进行分析处理,获取想要的数据. 一.urllib模块urlop ...

  6. itop安装中使用nginx安装后不能出现enter itop的问题

    安装中没有出现enter itop,  如下的网络请求给了我们原因 原来使用的是域名请求资源文件,而该域名并不能指向我的服务器,所以安装中资源文件请求不成功,查看了我的nginx配置,如下 [ro ...

  7. liunx+mysql数据库管理

    源码安装 查询是否安装:  rpm -aq |grep mysql 1.下载yum 源            wget 'https://dev.mysql.com/get/mysql57-commu ...

  8. uva1412 Fund Management

    状压dp 要再看看  例题9-17 /* // UVa1412 Fund Management // 本程序会超时,只是用来示范用编码/解码的方法编写复杂状态动态规划的方法 // Rujia Liu ...

  9. MPP(大规模并行处理)简介

    1. 什么是MPP? MPP (Massively Parallel Processing),即大规模并行处理,在数据库非共享集群中,每个节点都有独立的磁盘存储系统和内存系统,业务数据根据数据库模型和 ...

  10. 三大框架所使用的UI框架