题意:

  一根长度为n的木条,随机选k个位置将其切成k+1段,问这k+1段能组成k+1条边的多边形的概率?

思路:

  数学题。要求的是概率,明显与n无关。

  将木条围成一个圆后再开切k+1刀,得到k+1段。组不成多边形就是其中有一段特别长,比其他k段加起来还要长。先算出不能围成多边形的概率,那么就是圆上面必须要有一段的长度大于半个圆周长,且其他的k-1个位置都要在同一边。

  第一个点随机选,概率为1,假设这个点就是木条要组成圆的那两端。接下来要选其他的k个点的位置,他们都在同一个半圆上的概率是(1/2)k。假设分成这样的k+1段,A0A1A2....AK。那么A0--A1就是一段了。假设是这一段最大且超过n的一半。那么其他的k-1个位置就必须在同一边且在偏短的那一边。共有k+1段,都有可能是最长的那段,所以概率(k+1)*(1/2)k。答案为1-(k+1)*(1/2)k

  这题其实在考逻辑和证明能力啊,不是很懂的感觉。但就大概这样理解过来的。建议参考一下这些证明:http://www.zhihu.com/question/25408010/answer/30732054

 #include <bits/stdc++.h>
#define pii pair<int,int>
#define INF 0x3f3f3f3f
#define LL long long
using namespace std;
const int N=; int main()
{
//freopen("input.txt", "r", stdin);
int Case=, n, k, t;
cin>>t;
while(t--)
{
scanf("%d%d", &n, &k);
LL up=((LL)<<k)-k-;
LL down=((LL)<<k); LL g=__gcd(up, down);
up/=g;
down/=g;
printf("Case #%d: %lld/%lld\n", ++Case, up, down); }
return ;
}

AC代码

UVA 11971 Polygon 多边形(连续概率)的更多相关文章

  1. UVA 11971 - Polygon 数学概率

                                        Polygon  John has been given a segment of lenght N, however he n ...

  2. UVa 11971 - Polygon(几何概型 + 问题转换)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  3. UVa 11971 Polygon (数学,转化)

    题意:一根长度为n的木条,随机选k个位置将其切成k+1段,问这k+1段能组成k+1条边的多边形的概率. 析:这个题,很明显和 n 是没有任何关系的,因为无论 n 是多少那切多少段都可以,只与切多少段有 ...

  4. uva 11971 Polygon

    https://vjudge.net/problem/UVA-11971 有一根长度为n的木条,随机选k个位置把它们切成k+1段小木条.求这些小木条能组成一个多边形的概率. 将木条看做一个圆,线上切k ...

  5. UVa 11971 (概率) Polygon

    题意: 有一根绳子,在上面随机选取k个切点,将其切成k+1段,求这些线段能够成k+1边形的概率. 分析: 要构成k+1边形,必须最长的线段小于其他k个线段之和才行. 紫书上给出了一种解法,但是感觉理解 ...

  6. 紫书 例题 10-21 UVa 11971(连续概率)

    感觉这道题的转换真的是神来之笔 把木条转换成圆,只是切得次数变多一次 然后只要有一根木条长度为直径就租不成 其他点的概率为1/2^k 当前这个点的有k+1种可能 所以答案为1 - (k+1)/2^k ...

  7. UVa 10900 (连续概率、递推) So you want to be a 2n-aire?

    题意: 初始奖金为1块钱,有n个问题,连续回答对i个问题后,奖金变为2i元. 回答对每道题的概率在t~1之间均匀分布. 听到问题后有两个选择: 放弃回答,拿走已得到的奖金 回答问题: 如果回答正确,奖 ...

  8. UVA 11346 Probability 概率 (连续概率)

    题意:给出a和b,表示在直角坐标系上的x=[-a,a] 和 y=[-b,b]的这样一块矩形区域.给出一个数s,问在矩形内随机选择一个点p=(x,y),则(0.0)和p点组成的矩形面积大于s的概率是多少 ...

  9. 紫书 例题 10-20 UVa 10900(连续概率)

    分两类,当前第i题答或不答 如果不回答的话最大期望奖金为2的i次方 如果回答的话等于p* 下一道题的最大期望奖金 那么显然我们要取最大值 所以就要分类讨论 我们设答对i题后的最大期望奖金为d[i] 显 ...

随机推荐

  1. 【Selenium】测试流程和框架

    流程: 分析自动化测试需求→制定自动化测试计划→设计自动化测试用例→搭建环境→编写脚本→分析结果→维护脚本 框架: 线性测试.模块化测试.数据驱动.关键字驱动

  2. 【转载】asp.net 后台弹出提示框

    感觉这种最好用: public void showMessage(string str_Message) { ClientScript.RegisterStartupScript(this.GetTy ...

  3. hadoop部署之防火墙

    在部署hadoop时,好多资料上都写了要关闭防火墙,如果不关闭可能出现节点间无法通信的情况,于是大家也都这样做了,因此集群通信正常.当然集群一般是处于局域网中的,因此关闭防火墙一般也不会存在安全隐患, ...

  4. 【CQ18阶梯赛第8场】题解

    [A:HDU2032 杨辉三角]: 简单的递推,或者是基础的DP: 但是只有杨润东一个人1A,整体准确率只有8/37,具体原因不详. 经验:提交前一定要试一下比较特殊的数据或者最大的数据.其次,为了保 ...

  5. [SoapUI] Jenkins 配置不同环境(TP, LIVE)

  6. GCD基础知识

    并行和并发 在英文世界里,「并行」和「并发」的区别比较清晰,「并行」对应parallelism,「并发」对应concurrency:但在中文世界里二者仅一字之差,两个概念非常容易弄混淆: 各种资料对「 ...

  7. Eclipse全项目搜索指定文件&字串

    在eclipse中如果希望在大量的项目中寻找指定的文件可不是一件轻松的事,还好eclipse提供了强大的搜索功能. 我们可以通过通配符或正则表达式来设定查寻条件,下面是操作示例: ctrl+h 打开搜 ...

  8. 从MyEclipse到IntelliJ IDEA

    如何做到全键盘操作呢? 1.自定义快捷键实现全屏操作 你可以设置自定义快捷键进入全屏操作,并实现各个窗口之间的切换.这样,你就可以告别小窗口的时代,体验全屏显示的效果了!(相信有过多年开发经验的你一定 ...

  9. k8s-调度器、预选策略及优选函数-二十

    一.简介 master上运行着三个最核心的组件,apiserver.scheduler.controller manager.此外,master还依赖于ectd存储节点,最好ectd是有冗余能力的集群 ...

  10. linux的僵尸进程和孤儿进程

    1 僵尸进程: 子进程已经退出勒 但是还没有回收资源的进程为僵尸进程 代码验证 #include <stdio.h> #include <stdlib.h> #include ...