首先看这个得分方式,容易发现就相当于分k段,每段的值和两两乘起来。

这样就很容易列出dp方程:设f[i][j]为到j分成分成i段,转移是

\[f[i][j]=max { f[k][j]+s[k]*(s[j]-s[k]) }
\]

然后显然这个可以斜率优化,随便推一推式子,假设k选p大于选q,那么

\[f[p][j]+s[p]*(s[j]-s[p])>f[q][j]+s[q]*(s[j]-s[q])
\]

\[f[p][j]+s[p]*s[j]-s[p]^2>f[q][j]+s[q]*s[j]-s[q]^2
\]

\[f[p][j]-f[q][j]-s[p]^2+s[q]^2>s[j]*(s[q]-s[p])
\]

\[\frac{f[p][j]-f[q][j]-s[p]^2+s[q]^2}{s[q]-s[p]}>s[j]
\]

维护一个斜率单调的队列即可。

注意s[q]-s[p]可能是0,所以要特判一下

#include<iostream>
#include<cstdio>
using namespace std;
const int N=100005;
int n,m,to[205][N],q[N];
long long s[N],f[2][N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
inline double wk(int r,int j,int k)
{
if(s[j]==s[k])
return -1e18;
return (f[r&1^1][k]-s[k]*s[k]-f[r&1^1][j]+s[j]*s[j])*1.0/(s[j]-s[k]);
}
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++)
s[i]=s[i-1]+read();
for(int i=1;i<=m;i++)
{
int l=0,r=0;
for(int j=1;j<=n;j++)
{
while(l<r&&wk(i,q[l],q[l+1])<=s[j])
l++;
to[i][j]=q[l];
f[i&1][j]=f[(i&1)^1][q[l]]+s[q[l]]*(s[j]-s[q[l]]);
while(l<r&&wk(i,q[r-1],q[r])>=wk(i,q[r],j))
r--;
q[++r]=j;
}
}
printf("%lld\n",f[m&1][n]);
for(int i=m,u=n;i>=1;i--)
{
u=to[i][u];
printf("%d ",u);
}
return 0;
}#include<iostream>
#include<cstdio>
using namespace std;
const int N=100005;
int n,m,to[205][N],q[N];
long long s[N],f[2][N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
inline double wk(int r,int j,int k)
{
if(s[j]==s[k])
return -1e18;
return (f[r&1^1][k]-s[k]*s[k]-f[r&1^1][j]+s[j]*s[j])*1.0/(s[j]-s[k]);
}
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++)
s[i]=s[i-1]+read();
for(int i=1;i<=m;i++)
{
int l=0,r=0;
for(int j=1;j<=n;j++)
{
while(l<r&&wk(i,q[l],q[l+1])<=s[j])
l++;
to[i][j]=q[l];
f[i&1][j]=f[(i&1)^1][q[l]]+s[q[l]]*(s[j]-s[q[l]]);
while(l<r&&wk(i,q[r-1],q[r])>=wk(i,q[r],j))
r--;
q[++r]=j;
}
}
printf("%lld\n",f[m&1][n]);
for(int i=m,u=n;i>=1;i--)
{
u=to[i][u];
printf("%d ",u);
}
return 0;
}

bzoj 3675: [Apio2014]序列分割【斜率优化dp】的更多相关文章

  1. BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)

    洛谷传送门 题目大意:让你把序列切割k次,每次切割你能获得 这一整块两侧数字和的乘积 的分数,求最大的分数并输出切割方案 神题= = 搞了半天也没有想到切割顺序竟然和答案无关...我太弱了 证明很简单 ...

  2. BZOJ 3675 APIO2014 序列切割 斜率优化DP

    题意:链接 方法:斜率优化DP 解析:这题BZ的数据我也是跪了,特意去网上找到当年的数据后面二十个最大的点都过了.就是过不了BZ. 看到这道题自己第一发DP是这么推得: 设f[i][j]是第j次分第i ...

  3. bzoj3675[Apio2014]序列分割 斜率优化dp

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 3508  Solved: 1402[Submit][Stat ...

  4. [APIO2014]序列分割 --- 斜率优化DP

    [APIO2014]序列分割 题目大意: 你正在玩一个关于长度为\(n\)的非负整数序列的游戏.这个游戏中你需要把序列分成\(k+1\)个非空的块.为了得到\(k+1\)块,你需要重复下面的操作\(k ...

  5. 【bzoj3675】[Apio2014]序列分割 斜率优化dp

    原文地址:http://www.cnblogs.com/GXZlegend/p/6835179.html 题目描述 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列 ...

  6. BZOJ 3675: [Apio2014]序列分割( dp + 斜率优化 )

    WA了一版... 切点确定的话, 顺序是不会影响结果的..所以可以dp dp(i, k) = max(dp(j, k-1) + (sumn - sumi) * (sumi - sumj)) 然后斜率优 ...

  7. 【斜率DP】BZOJ 3675:[Apio2014]序列分割

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 1066  Solved: 427[Submit][Statu ...

  8. P3648 [APIO2014]序列分割 斜率优化

    题解:斜率优化\(DP\) 提交:\(2\)次(特意没开\(long\ long\),然后就死了) 题解: 好的先把自己的式子推了出来: 朴素: 定义\(f[i][j]\)表示前\(i\)个数进行\( ...

  9. BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)

    题目链接 BZOJ 3675 首先最后的答案和分割的顺序是无关的, 那么就可以考虑DP了. 设$f[i][j]$为做了$i$次分割,考虑前$j$个数之后的最优答案. 那么$f[i][j] = max( ...

随机推荐

  1. web.py 使用 db.select 返回的数据只能遍历一次

    2013-10-05 23:04:33|   1. web.py 使用 db.select 返回的数据只能遍历一次import webdb = web.database(dbn='mysql', db ...

  2. 洛谷——P1347 排序

    洛谷—— P1347 排序 题目描述 一个不同的值的升序排序数列指的是一个从左到右元素依次增大的序列,例如,一个有序的数列A,B,C,D 表示A<B,B<C,C<D.在这道题中,我们 ...

  3. Java的循环结构

    以下内容引用自http://wiki.jikexueyuan.com/project/java/loop-control.html: 可能存在一种情况,当需要执行的代码块数次,通常被称为一个循环.Ja ...

  4. CSS3 水波纹

    css3 动画设置水波纹,效果如下图: 源码: <!DOCTYPE html> <html lang="en"> <head> <meta ...

  5. eclipse工程设置项目jre

    Eclipse 是一个开放源代码的.基于Java的可扩展开发平台.就其本身而言,它只是一个框架和一组服务,用于通过插件组件构建开发环境.当我们导入已经存在项目或者通过svn引入项目时经常出现红叉叉的情 ...

  6. Java 等额本金等额本息工具类

    原文:http://www.open-open.com/code/view/1449034309983 等额本息: /** * Description:等额本息工具类 * Copyright: Cop ...

  7. linux 中断机制浅析

    一.中断相关结构体 1.irq_desc中断描述符 struct irq_desc { #ifdef CONFIG_GENERIC_HARDIRQS_NO_DEPRECATED struct irq_ ...

  8. jquery在ajax新加入的元素后绑定事件click

    使用YII在做一个点击小图.能够在弹出窗体中显示大图的功能的时候,发现.GridView首页面的列表项按点击时一切正常,但按下了下一页后. 再点击小图,就不起作用了.原来,这是GridView使用了a ...

  9. 使用 maskView 设计动画

    1.maskView(maskLayer) 基本原理 :可类比于多张png图片叠加遮罩 2.maskView配合CAGradientLayer,alpha通道图片的使用.maskView是iOS8以上 ...

  10. 自己定义验证器——用Struts2框架以框架师的思维灵活做好该事情

    面对的问题:自己定义一个18位身份验证器.编写验证器.在validators.xml文件里进行注冊.在验证配置文件里使用? 第一部分:理解Struts2中自带的验证器 第二部分:如何通过server( ...