bzoj 3675: [Apio2014]序列分割【斜率优化dp】
首先看这个得分方式,容易发现就相当于分k段,每段的值和两两乘起来。
这样就很容易列出dp方程:设f[i][j]为到j分成分成i段,转移是
\]
然后显然这个可以斜率优化,随便推一推式子,假设k选p大于选q,那么
\]
\]
\]
\]
维护一个斜率单调的队列即可。
注意s[q]-s[p]可能是0,所以要特判一下
#include<iostream>
#include<cstdio>
using namespace std;
const int N=100005;
int n,m,to[205][N],q[N];
long long s[N],f[2][N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
inline double wk(int r,int j,int k)
{
if(s[j]==s[k])
return -1e18;
return (f[r&1^1][k]-s[k]*s[k]-f[r&1^1][j]+s[j]*s[j])*1.0/(s[j]-s[k]);
}
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++)
s[i]=s[i-1]+read();
for(int i=1;i<=m;i++)
{
int l=0,r=0;
for(int j=1;j<=n;j++)
{
while(l<r&&wk(i,q[l],q[l+1])<=s[j])
l++;
to[i][j]=q[l];
f[i&1][j]=f[(i&1)^1][q[l]]+s[q[l]]*(s[j]-s[q[l]]);
while(l<r&&wk(i,q[r-1],q[r])>=wk(i,q[r],j))
r--;
q[++r]=j;
}
}
printf("%lld\n",f[m&1][n]);
for(int i=m,u=n;i>=1;i--)
{
u=to[i][u];
printf("%d ",u);
}
return 0;
}#include<iostream>
#include<cstdio>
using namespace std;
const int N=100005;
int n,m,to[205][N],q[N];
long long s[N],f[2][N];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
inline double wk(int r,int j,int k)
{
if(s[j]==s[k])
return -1e18;
return (f[r&1^1][k]-s[k]*s[k]-f[r&1^1][j]+s[j]*s[j])*1.0/(s[j]-s[k]);
}
int main()
{
n=read(),m=read();
for(int i=1;i<=n;i++)
s[i]=s[i-1]+read();
for(int i=1;i<=m;i++)
{
int l=0,r=0;
for(int j=1;j<=n;j++)
{
while(l<r&&wk(i,q[l],q[l+1])<=s[j])
l++;
to[i][j]=q[l];
f[i&1][j]=f[(i&1)^1][q[l]]+s[q[l]]*(s[j]-s[q[l]]);
while(l<r&&wk(i,q[r-1],q[r])>=wk(i,q[r],j))
r--;
q[++r]=j;
}
}
printf("%lld\n",f[m&1][n]);
for(int i=m,u=n;i>=1;i--)
{
u=to[i][u];
printf("%d ",u);
}
return 0;
}
bzoj 3675: [Apio2014]序列分割【斜率优化dp】的更多相关文章
- BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)
洛谷传送门 题目大意:让你把序列切割k次,每次切割你能获得 这一整块两侧数字和的乘积 的分数,求最大的分数并输出切割方案 神题= = 搞了半天也没有想到切割顺序竟然和答案无关...我太弱了 证明很简单 ...
- BZOJ 3675 APIO2014 序列切割 斜率优化DP
题意:链接 方法:斜率优化DP 解析:这题BZ的数据我也是跪了,特意去网上找到当年的数据后面二十个最大的点都过了.就是过不了BZ. 看到这道题自己第一发DP是这么推得: 设f[i][j]是第j次分第i ...
- bzoj3675[Apio2014]序列分割 斜率优化dp
3675: [Apio2014]序列分割 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 3508 Solved: 1402[Submit][Stat ...
- [APIO2014]序列分割 --- 斜率优化DP
[APIO2014]序列分割 题目大意: 你正在玩一个关于长度为\(n\)的非负整数序列的游戏.这个游戏中你需要把序列分成\(k+1\)个非空的块.为了得到\(k+1\)块,你需要重复下面的操作\(k ...
- 【bzoj3675】[Apio2014]序列分割 斜率优化dp
原文地址:http://www.cnblogs.com/GXZlegend/p/6835179.html 题目描述 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列 ...
- BZOJ 3675: [Apio2014]序列分割( dp + 斜率优化 )
WA了一版... 切点确定的话, 顺序是不会影响结果的..所以可以dp dp(i, k) = max(dp(j, k-1) + (sumn - sumi) * (sumi - sumj)) 然后斜率优 ...
- 【斜率DP】BZOJ 3675:[Apio2014]序列分割
3675: [Apio2014]序列分割 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 1066 Solved: 427[Submit][Statu ...
- P3648 [APIO2014]序列分割 斜率优化
题解:斜率优化\(DP\) 提交:\(2\)次(特意没开\(long\ long\),然后就死了) 题解: 好的先把自己的式子推了出来: 朴素: 定义\(f[i][j]\)表示前\(i\)个数进行\( ...
- BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)
题目链接 BZOJ 3675 首先最后的答案和分割的顺序是无关的, 那么就可以考虑DP了. 设$f[i][j]$为做了$i$次分割,考虑前$j$个数之后的最优答案. 那么$f[i][j] = max( ...
随机推荐
- Xcode warning:Auto property synthesis will not synthesize property
iOS 警告提示如下: 添加 @dynamic告诉编译器这个属性是动态的,动态的意思是等你编译的时候就知道了它只在本类合成; 如下:
- ionic 之 基本布局
目录: 简介 Hybrid vs. Others ionic CSS框架 基本布局 布局模式 定高条块:.bar .bar : 位置 .bar : 嵌入子元素 .bar : 嵌入input 内容:.c ...
- POJ 2135 最小费用最大流 入门题
Farm Tour Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 19207 Accepted: 7441 Descri ...
- loj6157 A^B Problem (并查集)
题目: https://loj.ac/problem/6157 分析: 这种树上异或,一般是采用分位考虑,但是这题即使分位,也会发现非常不好处理 这里考虑维护一个点到其根的路径的异或值 用并查集去检测 ...
- spring boot + redis 实现session共享
这次带来的是spring boot + redis 实现session共享的教程. 在spring boot的文档中,告诉我们添加@EnableRedisHttpSession来开启spring se ...
- Python开发的一个IDE推荐,Sublime Text 3
Sublime Text 3 官网下载地址为, LINK. 目前最新版本是3114. 这里转载泱泱长空的授权文件(注册码)文章[1],将几个可以用的注册码列举如下: 补充:2016.05 最近经过测试 ...
- jenkins修改日志级别方法
1.jenkins日志有时候也会消耗掉很大内存,在传输时也会消耗掉大量带宽,如图,300+M的日志大小,太夸张了吧 2.修改日志级别的方法: 在配置文件里修改,重启后永久生效,配置路径:/etc/sy ...
- uva558 Wormholes SPFA 求是否存在负环
J - Wormholes Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld & %llu Submit Stat ...
- iOS设计模式 - (1)概述
近期可自由安排的时间比較多, iOS应用方面, 没什么好点子, 就先放下, 不写了.花点时间学学设计模式. 之后将会写一系列博文, 记录设计模式学习过程. 当然, 由于我自己是搞iOS的, 所以之后设 ...
- 一天教你入门struts2
写在前面 自己也是一个java和java web的菜鸟.之前没有接触过java web方面的开发 想通过一个小项目,来熟悉struts2的开发流程 一个有趣的想法源于教研室项目上的一个功能实现–自己主 ...