from:https://stackoverflow.com/questions/41616292/how-to-load-and-retrain-tflean-model

This is to create a graph and save it

graph1 = tf.Graph()
with graph1.as_default():
network = input_data(shape=[None, MAX_DOCUMENT_LENGTH])
network = tflearn.embedding(network, input_dim=n_words, output_dim=128)
branch1 = conv_1d(network, 128, 3, padding='valid', activation='relu', regularizer="L2")
branch2 = conv_1d(network, 128, 4, padding='valid', activation='relu', regularizer="L2")
branch3 = conv_1d(network, 128, 5, padding='valid', activation='relu', regularizer="L2")
network = merge([branch1, branch2, branch3], mode='concat', axis=1)
network = tf.expand_dims(network, 2)
network = global_max_pool(network)
network = dropout(network, 0.5)
network = fully_connected(network, 2, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=0.001,loss='categorical_crossentropy', name='target')
model = tflearn.DNN(network, tensorboard_verbose=0)
clf, acc, roc_auc,fpr,tpr =classify_DNN(data,clas,model)
clf.save(model_path)

To reload and retrain or use it for prediction

MODEL = None
with tf.Graph().as_default():
## Building deep neural network
network = input_data(shape=[None, MAX_DOCUMENT_LENGTH])
network = tflearn.embedding(network, input_dim=n_words, output_dim=128)
branch1 = conv_1d(network, 128, 3, padding='valid', activation='relu', regularizer="L2")
branch2 = conv_1d(network, 128, 4, padding='valid', activation='relu', regularizer="L2")
branch3 = conv_1d(network, 128, 5, padding='valid', activation='relu', regularizer="L2")
network = merge([branch1, branch2, branch3], mode='concat', axis=1)
network = tf.expand_dims(network, 2)
network = global_max_pool(network)
network = dropout(network, 0.5)
network = fully_connected(network, 2, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=0.001,loss='categorical_crossentropy', name='target')
new_model = tflearn.DNN(network, tensorboard_verbose=3)
new_model.load(model_path)
MODEL = new_model

Use the MODEL for prediction or retraining. The 1st line and the with loop was important. For anyone who might need help

官方例子:

""" An example showing how to save/restore models and retrieve weights. """

from __future__ import absolute_import, division, print_function

import tflearn

import tflearn.datasets.mnist as mnist

# MNIST Data
X, Y, testX, testY = mnist.load_data(one_hot=True) # Model
input_layer = tflearn.input_data(shape=[None, 784], name='input')
dense1 = tflearn.fully_connected(input_layer, 128, name='dense1')
dense2 = tflearn.fully_connected(dense1, 256, name='dense2')
softmax = tflearn.fully_connected(dense2, 10, activation='softmax')
regression = tflearn.regression(softmax, optimizer='adam',
learning_rate=0.001,
loss='categorical_crossentropy') # Define classifier, with model checkpoint (autosave)
model = tflearn.DNN(regression, checkpoint_path='model.tfl.ckpt') # Train model, with model checkpoint every epoch and every 200 training steps.
model.fit(X, Y, n_epoch=1,
validation_set=(testX, testY),
show_metric=True,
snapshot_epoch=True, # Snapshot (save & evaluate) model every epoch.
snapshot_step=500, # Snapshot (save & evalaute) model every 500 steps.
run_id='model_and_weights') # ---------------------
# Save and load a model
# --------------------- # Manually save model
model.save("model.tfl") # Load a model
model.load("model.tfl") # Or Load a model from auto-generated checkpoint
# >> model.load("model.tfl.ckpt-500") # Resume training
model.fit(X, Y, n_epoch=1,
validation_set=(testX, testY),
show_metric=True,
snapshot_epoch=True,
run_id='model_and_weights') # ------------------
# Retrieving weights
# ------------------ # Retrieve a layer weights, by layer name:
dense1_vars = tflearn.variables.get_layer_variables_by_name('dense1')
# Get a variable's value, using model `get_weights` method:
print("Dense1 layer weights:")
print(model.get_weights(dense1_vars[0]))
# Or using generic tflearn function:
print("Dense1 layer biases:")
with model.session.as_default():
print(tflearn.variables.get_value(dense1_vars[1])) # It is also possible to retrieve a layer weights through its attributes `W`
# and `b` (if available).
# Get variable's value, using model `get_weights` method:
print("Dense2 layer weights:")
print(model.get_weights(dense2.W))
# Or using generic tflearn function:
print("Dense2 layer biases:")
with model.session.as_default():
print(tflearn.variables.get_value(dense2.b))

tflearn 保存模型重新训练的更多相关文章

  1. tflearn 中文汉字识别,训练后模型存为pb给TensorFlow使用——模型层次太深,或者太复杂训练时候都不会收敛

    tflearn 中文汉字识别,训练后模型存为pb给TensorFlow使用. 数据目录在data,data下放了汉字识别图片: data$ ls0  1  10  11  12  13  14  15 ...

  2. tensorflow训练自己的数据集实现CNN图像分类2(保存模型&测试单张图片)

    神经网络训练的时候,我们需要将模型保存下来,方便后面继续训练或者用训练好的模型进行测试.因此,我们需要创建一个saver保存模型. def run_training(): data_dir = 'C: ...

  3. 将tflearn的模型保存为pb,给TensorFlow使用

    参考:https://github.com/tflearn/tflearn/issues/964 解决方法: """ Tensorflow graph freezer C ...

  4. Keras保存模型并载入模型继续训练

    我们以MNIST手写数字识别为例 import numpy as np from keras.datasets import mnist from keras.utils import np_util ...

  5. sklearn保存模型-【老鱼学sklearn】

    训练好了一个Model 以后总需要保存和再次预测, 所以保存和读取我们的sklearn model也是同样重要的一步. 比如,我们根据房源样本数据训练了一下房价模型,当用户输入自己的房子后,我们就需要 ...

  6. pytorch加载和保存模型

    在模型完成训练后,我们需要将训练好的模型保存为一个文件供测试使用,或者因为一些原因我们需要继续之前的状态训练之前保存的模型,那么如何在PyTorch中保存和恢复模型呢? 方法一(推荐): 第一种方法也 ...

  7. PyTorch保存模型与加载模型+Finetune预训练模型使用

    Pytorch 保存模型与加载模型 PyTorch之保存加载模型 参数初始化参 数的初始化其实就是对参数赋值.而我们需要学习的参数其实都是Variable,它其实是对Tensor的封装,同时提供了da ...

  8. (原)tensorflow保存模型及载入保存的模型

    转载请注明出处: http://www.cnblogs.com/darkknightzh/p/7198773.html 参考网址: http://stackoverflow.com/questions ...

  9. 转sklearn保存模型

    训练好了一个Model 以后总需要保存和再次预测, 所以保存和读取我们的sklearn model也是同样重要的一步. 比如,我们根据房源样本数据训练了一下房价模型,当用户输入自己的房子后,我们就需要 ...

随机推荐

  1. Mysql:零散记录

    limit用法 查询第4行记录 select * from tablename limit 3,1; limit 3,1:截取第3行加1行的数据 查询第6-15行 select * from tabl ...

  2. ruby on rails使用gmail的smtp发送邮件

    参考至http://guides.rubyonrails.org/action_mailer_basics.html 在gmail账户的安全里先开启两步验证(链接:https://myaccount. ...

  3. DHU Club Festival(数学)

    链接: http://acm.dhu.edu.cn/problem/view.html?problemId=5272 题意: 给定n瓶不同浓度的液体, 每次可以挑选x(x>=2)瓶混合, 求最后 ...

  4. Java Class 利用classpath来获取源文件地址

    利用classpath来获取源文件地址 @author ixenos 应用场景 Properties props = new Properties(); /** * . 代表java命令运行的目录 * ...

  5. Android 4.4.2上与BLE 蓝牙锁设备的通讯

    Android从4.3(Api level 18)开始支持BLE的开发,本文记录了Android 4.4.2设备与BLE设备通讯的流程. 权限需求: <uses-permission andro ...

  6. 【BZOJ3669】魔法森林(LCT)

    题意:有一张无向图,每条边有两个权值.求选取一些边使1和n连通,且max(a[i])+max(b[i])最小 2<=n<=50,000 0<=m<=100,000 1<= ...

  7. 移动端click事件延迟300ms该如何解决

    window.addEventListener( "load", function() {     FastClick.attach( document.body ); }, fa ...

  8. P1996||T1282 约瑟夫问题 洛谷||codevs

    https://www.luogu.org/problem/show?pid=1996||http://codevs.cn/problem/1282/ 题目背景 约瑟夫是一个无聊的人!!! 题目描述 ...

  9. Ubuntu 16.04安装磁盘占用分析器:ncdu

    使用此工具能分析出哪个文件或者文件夹有多大,从而实现自己手动删除. 安装: sudo apt-get install ncdu 使用: #默认搜索当前用户目录 ncdu #搜索整个硬盘 ncdu /

  10. PyMySQL - Python3 MySQL数据库连接 - 基本操作

    一.Python连接MySQL数据库   1.导入模块 #导入模块 import pymysql   2.打开数据库连接 #打开数据库连接 #注意:这里已经假定存在数据库testdb,db指定了连接的 ...