Description

Input

修正一下

l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1

Output

Sample Input

6 3
1 2 3 2 1 2
1 5
3 6
1 5

Sample Output

1
2
1

HINT

修正下:

n <= 40000, m <= 50000

/*
区间的是完整的所有块的众数,和不完整块中出现的数。
先预处理出每块的众数,对于不完整的,直接扫就可以。
那么只要能快速得出一个数在某个区间内出现次数即可。
*/
#include<cstdio>
#include<iostream>
#include<vector>
#include<cstring>
#include<algorithm>
#include<map>
#define N 50010
using namespace std;
int n,m,val[N],v[N],bl[N],f[][],cnt[N],blo=,id;
vector<int> grap[N];
map<int,int> mp;
void init(int x){
memset(cnt,,sizeof(cnt));
int mx=,ans=;
for(int i=(x-)*blo+;i<=n;i++){
cnt[v[i]]++;
if(cnt[v[i]]>mx||(cnt[v[i]]==mx&&val[v[i]]<val[ans]))
mx=cnt[v[i]],ans=v[i];
f[x][bl[i]]=ans;
}
}
int querysum(int a,int b,int x){
return upper_bound(grap[x].begin(),grap[x].end(),b)-lower_bound(grap[x].begin(),grap[x].end(),a);
}
int query(int a,int b){
int ans=f[bl[a]+][bl[b]-];
int mx=querysum(a,b,ans);
for(int i=a;i<=min(bl[a]*blo,b);i++){
int t=querysum(a,b,v[i]);
if(t>mx||(t==mx&&val[v[i]]<val[ans]))
mx=t,ans=v[i];
}
if(bl[a]!=bl[b]){
for(int i=(bl[b]-)*blo+;i<=b;i++){
int t=querysum(a,b,v[i]);
if(t>mx||(t==mx&&val[v[i]]<val[ans]))
mx=t,ans=v[i];
}
}
return ans;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
scanf("%d",&v[i]);
if(!mp[v[i]]){
mp[v[i]]=++id;
val[id]=v[i];
}
v[i]=mp[v[i]];
grap[v[i]].push_back(i);
}
for(int i=;i<=n;i++)bl[i]=(i-)/blo+;
for(int i=;i<=bl[n];i++)init(i);
int ans=;
for(int i=;i<=m;i++){
int a,b;scanf("%d%d",&a,&b);
a=(a+ans-)%n+;b=(b+ans-)%n+;
if(a>b)swap(a,b);
ans=val[query(a,b)];
printf("%d\n",ans);
}
return ;
}

蒲公英(bzoj 2724)的更多相关文章

  1. [BZOJ 2724] [Violet 6] 蒲公英 【分块】

    题目链接:BZOJ - 2724 题目分析 这道题和 BZOJ-2821 作诗 那道题几乎是一样的,就是直接分块,每块大小 sqrt(n) ,然后将数字按照数值为第一关键字,位置为第二关键字排序,方便 ...

  2. BZOJ 2724: [Violet 6]蒲公英

    2724: [Violet 6]蒲公英 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1633  Solved: 563[Submit][Status ...

  3. BZOJ 2724: [Violet 6]蒲公英( 分块 )

    虽然AC了但是时间惨不忍睹...不科学....怎么会那么慢呢... 无修改的区间众数..分块, 预处理出Mode[i][j]表示第i块到第j块的众数, sum[i][j]表示前i块j出现次数(前缀和, ...

  4. 【BZOJ 2724】 2724: [Violet 6]蒲公英 (区间众数不带修改版本)

    2724: [Violet 6]蒲公英 Time Limit: 40 Sec  Memory Limit: 512 MBSubmit: 1908  Solved: 678 Description In ...

  5. 【刷题】BZOJ 2724 [Violet 6]蒲公英

    Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1 Output Sample Input ...

  6. 【BZOJ 2724】 蒲公英

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=2724 [算法] 分块算法在线维护区间众数 分块算法的精髓就在于 : 大段维护,局部朴 ...

  7. BZOJ 2724: [Violet 6]蒲公英 [分块 区间众数]

    传送门 题面太美不忍不放 分块分块 这种题的一个特点是只有查询,通常需要预处理:加入修改的话需要暴力重构预处理 预处理$f[i][j]$为第i块到第j块的众数,显然$f[i][j]=max{f[i][ ...

  8. bzoj 2724 蒲公英 分块

    分块,预处理出每两个块范围内的众数,然后在暴力枚举块外的进行比较 那么怎么知道每一个数出现的次数呢?离散后,对于每一个数,维护一个动态数组就好了 #include<cstdio> #inc ...

  9. BZOJ.2724.[Violet 6]蒲公英(静态分块)

    题目链接 区间众数 强制在线 考虑什么样的数会成为众数 如果一个区间S1的众数为x,那么S1与新区间S2的并的众数只会是x或S2中的数 所以我们可以分块先预处理f[i][j]表示第i到第j块的众数 对 ...

  10. BZOJ 2724 蒲公英 | 分块模板题

    题意 给出一个序列,在线询问区间众数.如果众数有多个,输出最小的那个. 题解 这是一道分块模板题. 一个询问的区间的众数,可能是中间"整块"区间的众数,也可能是左右两侧零散的数中的 ...

随机推荐

  1. 使用office 365打开excel文件报错,提示“向程序发送命令时出现问题”

    我买了一套正版的office 365装在我的windows10 上.但是每次打开excel都会报错,如图一.求教了微软技术人员,他们给出了以下办法: 图一 方法一: 修复安装Office ====== ...

  2. 关于自动化测试环境的集成(Jenkins+RobotFramework+TestLink+SVN)

    本人主要从事网络安全产品的测试,由于一些产品功能在后期稳定后每个版本的迭代仍需要投入大量的时间和精力去测试,所以近期计划逐步的去了解自动化测试的一些内容来节省和解放一些资源.由于自己并没有什么编码基础 ...

  3. Alfred的配置和使用

    http://www.jianshu.com/p/f77ad047f7b0   Alfred:mac上的神兵利器,提升工作效率*n,快捷键:option + 空格.鉴于是看了池老师的<人生元编程 ...

  4. 第2节 azkaban调度:17、azkaban的两个服务模式的安装

    2.3.3.azkaban两个服务模式安装 1.确认所需软件: Azkaban Web服务安装包 azkaban-web-server-0.1.0-SNAPSHOT.tar.gz Azkaban执行服 ...

  5. 用jquery操作xml文件

    一. xml文件\内容读取 1.读取xml文件 $.get( xmlfile.xml , function (xml){ //xml即为可以读取使用的内容,具体读取见第2点 }); 2.读取xml内容 ...

  6. bootstrap 翻页(对齐的链接)

    <!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...

  7. 【OS_Linux】Linux中虚拟机的三种上网方式——桥接、NAT、Host-only

    1.桥接 桥接方便做实验,配置ip方便.可以和局域网中的其他机器进行通信,也可以和公网进行通信.缺点是会占用主机所在局域网的一个ip. 2. NAT NAT模式下虚拟机可以和主机进行通信,可以上网,而 ...

  8. (14)zabbix Simple checks基本检测

    1. 开始 Simple checks通常用来检查远程未安装代理或者客户端的服务 使用simple checks,被监控客户端无需安装zabbix agent客户端,zabbix server直接使用 ...

  9. 【转发】【linux】【ftp】CentOS 7.0安装配置Vsftp服务器

    adduser -d /var/www/android -g ftp -s /sbin/nologin ftp2 一.配置防火墙,开启FTP服务器需要的端口 CentOS 7.0默认使用的是firew ...

  10. Python 模块和包的概念

    模块&包(* * * * *) 模块(modue)的概念: 在计算机程序的开发过程中,随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护. 为了编写可维护的代码,我们把很多函 ...