洛谷P3760 - [TJOI2017]异或和
Description
给出一个\(n(n\leq10^5)\)的序列\(\{a_n\}(\Sigma a_i\leq10^6)\),求该数列所有连续和的异或和。
Solution
线段树/树状数组。
首先做出前缀和\(p\),然后按位考虑答案上的值。考虑\(2^k\)这一位,有多少个连续和\([i,j]\)在\(2^k\)位为\(1\)。我们发现,\(x\)在\(2^k\)位上为\(1⇔x \bmod 2^{k+1}\in[2^k,2^{k+1}-1]\)。那么对于每一个\(j\),求出有多少个\(i<j\)满足\((p_j-p_i) \bmod 2^{k+1}\in[2^k,2^{k+1}-1]\),即\(p_i\in[p_j-2^{k+1}+1,p_j-2^k] \pmod {2^{k+1}}\)。那么我们只要用线段树来做就好啦。注意这个区间有可能由于取模而被分成两半,要分别来求。
时间复杂度\(O(nlog^2(\Sigma a_i))\)。
Code
//[TJOI2017]异或和
#include <cstdio>
#include <cstring>
typedef long long lint;
inline char gc()
{
static char now[1<<16],*s,*t;
if(s==t) {t=(s=now)+fread(now,1,1<<16,stdin); if(s==t) return EOF;}
return *s++;
}
inline int read()
{
int x=0; char ch=gc();
while(ch<'0'||'9'<ch) ch=gc();
while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=gc();
return x;
}
const int N=1e5+10;
int n; lint pre[N];
const int N1=4e6;
int cnt,rt,ch[N1][2]; int sum[N1];
inline void update(int p) {sum[p]=sum[ch[p][0]]+sum[ch[p][1]];}
void ins(int &p,int L0,int R0,int x)
{
if(!p) p=++cnt;
if(L0==R0) {sum[p]++; return;}
int mid=L0+R0>>1;
if(x<=mid) ins(ch[p][0],L0,mid,x);
else ins(ch[p][1],mid+1,R0,x);
update(p);
}
int optL,optR;
int query(int p,int L0,int R0)
{
if(!p) return 0;
if(optL<=L0&&R0<=optR) return sum[p];
int mid=L0+R0>>1; int res=0;
if(optL<=mid) res+=query(ch[p][0],L0,mid);
if(mid<optR) res+=query(ch[p][1],mid+1,R0);
return res;
}
int check(lint m)
{
cnt=0; rt=++cnt;
memset(ch,0,sizeof ch);
memset(sum,0,sizeof sum);
lint m1=m<<1,res=0;
for(int i=0;i<=n;i++)
{
lint x=pre[i]%m1,y=x-m;
if(y<0) optL=x+1,optR=y+m1,res+=query(rt,0,m1-1);
else
{
optL=0,optR=y; res+=query(rt,0,m1-1);
optL=x+1,optR=m1-1; if(optL<=optR) res+=query(rt,0,m1-1);
}
ins(rt,0,m1-1,x);
}
return res&1;
}
int main()
{
n=read();
for(int i=1;i<=n;i++) pre[i]=pre[i-1]+read();
lint ans=0;
for(lint i=1;i<=pre[n];i<<=1) if(check(i)) ans|=i;
printf("%lld\n",ans);
return 0;
}
P.S.
星际了看错题以为\(a_i\leq10^6\),也就是\(\Sigma a_i\leq10^{11}\)所以用了动态开点线段树...实际上用树状数组就可以解决,常数还要小很多。
洛谷P3760 - [TJOI2017]异或和的更多相关文章
- Bzoj3261/洛谷P4735 最大异或和(可持久化Trie)
题面 Bzoj 洛谷 题解 显然,如果让你查询整个数列的最大异或和,建一颗\(01Trie\),每给定一个\(p\),按照二进制后反方向跳就行了(比如当前二进制位为\(1\),则往\(0\)跳,反之亦 ...
- [洛谷P3763] [TJOI2017]DNA
洛谷题目链接:[TJOI2017]DNA 题目描述 加里敦大学的生物研究所,发现了决定人喜不喜欢吃藕的基因序列S,有这个序列的碱基序列就会表现出喜欢吃藕的性状,但是研究人员发现对碱基序列S,任意修改其 ...
- [洛谷P3761] [TJOI2017]城市
洛谷题目链接:[TJOI2017]城市 题目描述 从加里敦大学城市规划专业毕业的小明来到了一个地区城市规划局工作.这个地区一共有ri座城市,<-1条高速公路,保证了任意两运城市之间都可以通过高速 ...
- 洛谷 P3359 改造异或树
题目描述 给定一棵n 个点的树,每条边上都有一个权值.现在按顺序删掉所有的n-1条边,每删掉一条边询问当前有多少条路径满足路径上所有边权值异或和为0. 输入输出格式 输入格式: 第一行一个整数n. 接 ...
- 洛谷P3759 [TJOI2017]不勤劳的图书管理员 【树状数组套主席树】
题目链接 洛谷P3759 题解 树状数组套主席树板题 #include<algorithm> #include<iostream> #include<cstring> ...
- 洛谷P3763 [Tjoi2017]DNA 【后缀数组】
题目链接 洛谷P3763 题解 后缀数组裸题 在BZOJ被卡常到哭QAQ #include<algorithm> #include<iostream> #include< ...
- 洛谷P3760异或和
传送门啦 传送门啦 一般这种位运算的题都要把每一位拆开来看,因为位运算每个位的结果这和这一位的数有关. 这样我们用s[i]表示a的前缀和,即 $ a[1]+a[2]+....a[i] $ ,然后我们从 ...
- 洛谷P4462 [CQOI2018]异或序列(莫队)
题意 题目链接 Sol 一开始以为K每次都是给出的想了半天不会做. 然而发现读错题了维护个前缀异或和然后直接莫队搞就行,. #include<bits/stdc++.h> #define ...
- 【洛谷P3917】异或序列
题目大意:给定一个长度为 N 的序列,每个位置有一个权值,求 \[\sum\limits_{1\le i\le j\le n}(a_i\oplus a_{i+1}...\oplus a_j)\] 的值 ...
随机推荐
- Apache Kafka框架学习
背景介绍 消息队列的比较 kafka框架介绍 术语解释 文件存储 可靠性保证 高吞吐量实现 负载均衡 应用场景 背景介绍: kafka是由Apache软件基金会维护的一个开源流处理平台,由scala和 ...
- 最小化安装centos后ifconfig看不到eth0
最小换安装centos后,ifconfig看不到eth0,只看到一个lo ifup eth0
- MIPS—冒泡排序
SORT 使用冒泡排序对整数数组进行排序,这种排序虽然不是最快的,但却是最简单的. C语言代码 #include<stdio.h> #include<iostream> usi ...
- 由DAG到背包问题——记忆化搜索和递推两种解法
一.问题描述 物品无限的背包问题:有n种物品,每种均有无穷多个.第 i 种物品的体积为Vi,重量为Wi.选一些物品装到一个容量为 C 的背包中,求使得背包内物品总体积不超过C的前提下重量的最大值.1≤ ...
- 利用java自带的base64实现加密、解密
package com.stone.util; import java.io.UnsupportedEncodingException; import sun.misc.*; public class ...
- js parse_url 引发的
原文链接:https://www.w3.org/TR/2011/WD-html5-20110525/origin-0.html 这里只是做下记录: 5.3 Origin — HTML5 li, dd ...
- 2017年网络空间安全技术大赛部分writeup
作为一个bin小子,这次一个bin都没做出来,我很羞愧. 0x00 拯救鲁班七号 具体操作不多说,直接进入反编译源码阶段 可以看到,只要2处的str等于a就可以了,而str是由1处的checkPass ...
- PAT (Basic Level) Practise (中文)-1038. 统计同成绩学生(20)
PAT (Basic Level) Practise (中文)-1038. 统计同成绩学生(20) http://www.patest.cn/contests/pat-b-practise/10 ...
- 连接器前置挂载U盾
连接器前置挂载U盾 1. 宿主机配置及其信息 虚拟化软件版本 主机名 宿主机IP 账号及其密码 WorkStation windows idca- vm01 172.16.6.30 * Qemu-kv ...
- Vue构建项目
构建Vue项目 按照官网教程安装 //先安装脚手架 cnpm i -g vue-cli //查看项目目标列表: webpack browserify pwa 等项目模板 vue list //使用we ...