1、给一个串,在给一个单词集合,求用这个单词集合组成串,共有多少种组法。

例如:串 abcd, 单词集合 a, b, cd, ab

组合方式:2种:

a,b,cd

ab,cd

2、把单词集合建立字典树,然后从后向前dp,dp[i]=dp[i]+dp[i+len(x)]; 其中x为当前找到的前缀长度。

3、

#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std; #define MAX 26
#define MOD 20071027 int dp[]; struct Trie
{
Trie *next[MAX];
int v; //根据需要变化,1代表无此单词,-1代表有此单词
};
Trie *root; void createTrie(char *str)
{
int len = strlen(str);
Trie *p = root, *q;
for(int i=; i<len; ++i)
{
int id = str[i]-'a';
if(p->next[id] == NULL)
{
// q = (Trie *)malloc(sizeof(Trie));
q = new Trie;
q->v = ; //初始v==1
for(int j=; j<MAX; ++j)
q->next[j] = NULL;
p->next[id] = q;
}
p = p->next[id];
}
p->v = -; //若为结尾,则将v改成-1表示
}
int findTrie(char *str,int mI,int len)
{
int ret=;
//int len = strlen(str);//每次都计算,很浪费时间
Trie *p = root;
for(int i=mI; i<len; ++i)
{
int id = str[i]-'a';
p = p->next[id];
if(p == NULL) //若为空集,表示不存以此为前缀的串
return ret;
if(p->v == -){ //字符集中已有串是此串的前缀
ret=(ret+dp[i+])%MOD;
}
}
return ret;
}
int deleteTrie(Trie* T)
{
int i;
if(T==NULL)
return ;
for(i=; i<MAX; i++)
{
if(T->next[i]!=NULL)
deleteTrie(T->next[i]);
}
//free(T);
delete(T);
return ;
}
int main()
{
char str[];
char str2[];
int i,S,len,mCase=;
while(~scanf("%s",str)){
root=new Trie;
for(i=; i<MAX; i++)
root->next[i]=NULL;
memset(dp,,sizeof(dp));
len=strlen(str);
scanf("%d",&S);
while(S--){
scanf("%s",str2);
createTrie(str2);
} dp[len]=;
for(i=len-;i>=;--i)
dp[i]=findTrie(str,i,len); printf("Case %d: %d\n",++mCase,dp[]);
delete(root);
}
return ;
}

UVA - 1401 Remember the Word(trie+dp)的更多相关文章

  1. UVA 3942 Remember the Word (Trie+DP)题解

    思路: 大白里Trie的例题,开篇就是一句很容易推出....orz 这里需要Trie+DP解决. 仔细想想我们可以得到dp[i]=sum(dp[i+len[x]]). 这里需要解释一下:dp是从最后一 ...

  2. UVALive - 3942 Remember the Word (Trie + DP)

    题意: 给定一篇长度为L的小写字母文章, 然后给定n个字母, 问有多少种方法用这些字母组成文章. 思路: 用dp[i]来表达[i , L]的方法数, 那么dp[i] 就可以从dp[len(x) + i ...

  3. UVA 1401 Remember the Word(用Trie加速动态规划)

    Remember the Word Neal is very curious about combinatorial problems, and now here comes a problem ab ...

  4. UVa 1220 - Party at Hali-Bula(树形DP)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  5. UVA 12063 Zeros and Ones(三维dp)

    题意:给你n.k,问你有多少个n为二进制的数(无前导零)的0与1一样多,且是k的倍数 题解:对于每个k都计算一次dp,dp[i][j][kk][l]表示i位有j个1模k等于kk且第一位为l(0/1) ...

  6. UVa 11400 - Lighting System Design(线性DP)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  7. UvaLive3942(Trie + dp)

    查了半天数组越界的RE,才发现自己把ch数组放结构体里是过大的……放全局就A了. 类似区间的dp比较显然,只是用trie树做了优化,使得可以在trie树里一边走一边往上加dp值,不必枚举以前的每个位置 ...

  8. UVa 11270 铺放骨牌(轮廓线DP)

    https://vjudge.net/problem/UVA-11270 题意: 用1×2骨牌覆盖n×m棋牌,有多少种方法? 思路: 这道题目是典型的轮廓线DP题. 所谓轮廓线DP,就是以整行整列为状 ...

  9. UVA - 11488 Hyper Prefix Sets(trie树)

    1.给n个只含0.1的串,求出这些串中前缀的最大和. 例1: 0000 0001 10101 010 结果:6(第1.2串共有000,3+3=6) 例2: 01010010101010101010 1 ...

随机推荐

  1. exports和moudle. exports

    http://zihua.li/2012/03/use-module-exports-or-exports-in-node/ https://github.com/seajs/seajs/issues ...

  2. 分享21个基于jquery菜单导航的效果

    jquery导航菜单插件制作jquery动画菜单熔岩灯菜单效果更新时间:02月15日 14:53:03 虾米精选-菜单导航-导航菜单 0浏览 / ★★★☆☆星级 / 未知软件大小/ jquery导航菜 ...

  3. FZU-2148-Moon Game,,几何计算~~

    Problem 2148 Moon Game Time Limit: 1000 mSec Memory Limit : 32768 KB  Problem Description Fat brothe ...

  4. FZU2102Solve equation

    Problem 2102 Solve equation Accept: 881    Submit: 2065 Time Limit: 1000 mSec    Memory Limit : 3276 ...

  5. hdu 4790 数学

    /* 题意:给你二个区间[a,b]和[c,d] 分别从中选一个数x和y使的(x+y)%p=m; 可以这样来求,先求出(0->b和0->d区间段的值)-(区间0->a-1和0-> ...

  6. 【HDOJ6305】RMQ Similar Sequence(笛卡尔树)

    题意: 给定一个数组a,现在存在一个数组b,其元素值在[0,1]随机生成 若对于a,b,任意rmq问题的最值出现在同一个数组中的位置,则数组b的价值为∑b[i],否则为0,求数组b的期望价值 n< ...

  7. mongodb 报错问题

    系统不支持:Mongo 错误位置 FILE: C:\wamp64\www\frame\a_tp32\ThinkPHP\Library\Think\Db\Driver\Mongo.class.php L ...

  8. 【转载】epoll与select/poll的区别总结

    因为这道题目经常被问到.干脆总结一下,免得遗漏了. 参考文章:http://www.cnblogs.com/qiaoconglovelife/p/5735936.html 1 本质上都是同步I/O 三 ...

  9. 【nginx】【转】Nginx启动框架处理流程

    Nginx启动过程流程图: ngx_cycle_t结构体: Nginx的启动初始化在src/core/nginx.c的main函数中完成,当然main函数是整个Nginx的入口,除了完成启动初始化任务 ...

  10. js 判断对象中所有属性是否为空

    测试: var obj = {a:"123",b:""}; for(var key in obj){ if(!obj[key]) return; } 函数封装: ...