Omnidirectional DSO: Direct Sparse Odometry with Fisheye Cameras 论文摘要
1. Abstract
- 通过一种Unified Omnidirectional Model作为投影方程。
- 这种方式可以使用图像的所有内容包括有强畸变的区域,而现存的视觉里程计方案只能修正或者切掉来使用部分图像。
- 关键帧窗口中的模型参数是被联合优化的,包括相机的内外参,3D地图点,仿射亮度参数。
- 因为大FoV,帧间的重合区域更大,并且更spatially distributed.
- 我们的算法更牛逼。
1. Introduction
我们用了一个unified omnidirectional model在fixed-lag smoothing approach.
2. Related Work
Pose graph忽略了关键帧间fine-grained(细纹理的) 的相关,并且需要线性化和高斯估计来浓缩测量。
有一个Omnidirectional LSD-SLAM方案甚至可以用大于180°的相机FoV。
4. Camera Models
A. Pinhole Model
\[
\pi_{u}(\mathbf{x})=\left[\begin{array}{ll}{f_{x}} & {0} \\ {0} & {f_{y}}\end{array}\right]\left[\begin{array}{l}{x / z} \\ {y / z}\end{array}\right]+\left[\begin{array}{l}{c_{x}} \\ {c_{y}}\end{array}\right]
\]
针孔投影模型假设被估计的3D点是在图像平面上方的, i.e. 他们的深度是比焦距大的,这限制了FoV得小于180°。
B. Unifed Omnidirectional Model
这个模型的优势:
- 可以准确model很多图像设备和镜头的geometric image formation。
- 反投影函数$ \pi^{-1}$是closed-form. 一个3D点是先投影到单位球,然后投到针孔相机模型with an z-axis offset \(-\xi\)。
\[
\pi_{u}(\mathbf{x})=\left[\begin{array}{c}{f_{x} \frac{x}{z+\|\mathbf{x}\| \xi}} \\ {f_{y} \frac{y}{z+\|\mathbf{x}\| \xi}}\end{array}\right]+\left[\begin{array}{c}{c_{x}} \\ {c_{y}}\end{array}\right]
\]
这里\[\|\mathbf{x}\|\]是x的norm.
\[
\begin{array}{l}{\pi_{u}^{-1}(\mathbf{u}, d)} \\ {\qquad=\frac{1}{d}\left(\frac{\xi+\sqrt{1+\left(1-\xi^{2}\right)\left(\tilde{u}^{2}+\tilde{v}^{2}\right)}}{\tilde{u}^{2}+\tilde{v}^{2}+1}\left[\begin{array}{l}{\tilde{u}} \\ {\tilde{v}} \\ {1}\end{array}\right]-\left[\begin{array}{l}{0} \\ {0} \\ {\xi}\end{array}\right]\right)}\end{array}
\]
5. System Overview
A. Model Formulation
标识photometric error的能量函数:
\[
E_{\mathbf{p} j} :=\sum_{\mathbf{p} \in N_{p}} w_{p}\left\|\left(I_{j}\left[\mathbf{p}^{\prime}\right]-b_{j}\right)-\frac{t_{j} e^{a_{j}}}{t_{i} e^{a_{i}}}\left(I_{i}[\mathbf{p}]-b_{i}\right)\right\|_{\gamma}
\]
第i帧上的一个点p投影到第j帧,用一个patch \(N_p\)上的灰度误差平方和SSD (Sum of Squared Differences) ,\(w_p\)是基于梯度的权重。\(\|\cdot\|_{\gamma}\)$是一个huber norm.
\[
\begin{array}{l}{\mathbf{p}^{\prime}=\pi\left(\mathbf{R} \pi^{-1}\left(\mathbf{p}, d_{p}\right)+\mathbf{t}\right)} \\ {\text { with }} \\ {\qquad\left[\begin{array}{cc}{\mathbf{R}} & {\mathbf{t}} \\ {0} & {1}\end{array}\right] :=\mathbf{T}_{\mathbf{j}} \mathbf{T}_{\mathbf{i}}^{-1}}\end{array}
\]
滑窗里的光度误差项是:
\[
E_{\text {photo}} :=\sum_{i \in F} \sum_{\mathbf{p} \in P_{i}} \sum_{j \in o b s(\mathbf{p})} E_{\mathbf{p} j}
\]
B. Distance Estimation along with Epipolar Curve
当一帧被成功track了,我们用stereo matching来refine候选点的逆深度。
DSO在极线上搜索匹配。但是当在鱼眼图上用unified omnidirectional model来做的时候,就变成一条曲线(更准确的说是锥线。
极曲线:我们在单位球上定义两个点\(\mathbf{p}_{0}, \mathbf{p}_{\infty} \in \mathbb{R}^{3}\)围绕在投影中心\(C_{ref}\)上,来对应最大最小的逆深度\[d_{max}, d_{min}\].
\[
\begin{aligned} \mathbf{p}_{0} & :=\pi_{s}\left(\mathbf{R} \pi_{u}^{-1}\left(\mathbf{p}, d_{\min }\right)+\mathbf{t}\right) \\ \mathbf{p}_{\infty} & :=\pi_{s}\left(\mathbf{R} \pi_{u}^{-1}\left(\mathbf{p}, d_{\max }\right)+\mathbf{t}\right) \end{aligned}
\]
然后线性插值with \(\alpha \in [0, 1]\)
\[
\mathbf{p}_{L}(\alpha) :=\alpha \mathbf{p}_{0}+(1-\alpha) \mathbf{p}_{\infty}
\]
我们通过把这个线投影到目标图像来获得极曲线。
\[
\mathbf{u}_{L}(\alpha) :=\pi_{u}\left(\mathbf{p}_{L}(\alpha)\right)
\]
C. Frame Management
- Initial Frame Tracking:
5层金字塔,场景和亮度变化是持续估计。
- Keyframe Creation
当关键帧被创建的时候,候选点会基于space distribution and image gradient来被选择。我们用初始化的逆深度和大variance来给这些点。后续有帧被tracked的话,来refine点的深度。
- Keyframe Marginalization
当超过7帧关键帧的时候,旧的点和帧就会被边缘化掉。heuristic distance
- Windowed Optimization
6. Evaluation
A. TUM SLAM for Omnidirectional Cameras Dataset
提供了室内鱼眼数据和真值. 是global shutter的,然后是185°FoV. 1280 ×1024分辨率。
我们把图crop然后scale到480×480的。
1) Accuracy Comparison
DSO在精度和鲁棒性上比SVO和LSD-SLAM厉害。
Unified Omnidirectional camera model更提高了DSO和LSD-SLAM的表现。
2) Benefit of Large Field of View
3) Timing measurement
视角广的话,关键帧插入就少了,mapping快了。
B) Oxford Robotcar Dataset
这数据有100组重复的路线,并且有着不同的光照,交通场景。
7. Conclusions
反正我们牛逼。
Omnidirectional DSO: Direct Sparse Odometry with Fisheye Cameras 论文摘要的更多相关文章
- Direct Visual-Inertial Odometry with Stereo Cameras
这对于直接方法是特别有益的:众所周知直接图像对准是非凸的,并且只有在足够准确的初始估计可用时才能预期收敛.虽然在实践中像粗到精跟踪这样的技术会增加收敛半径,但是紧密的惯性积分可以更有效地解决这个问题, ...
- 论文阅读: Direct Monocular Odometry Using Points and Lines
Direct Monocular Odometry Using Points and Lines Abstract 大多数VO都用点: 特征匹配 / 基于像素intensity的直接法关联. 我们做了 ...
- DSO 运行 —— dso_ros + Android 手机摄像头
转载请注明出处,谢谢 原创作者:Mingrui 原创链接:https://www.cnblogs.com/MingruiYu/p/12425855.html 本文要点: dso 配置安装 dso 离线 ...
- GitHub 上优秀的开源SLAM repo (更新中)
GitHub 上优秀的开源SLAM repo (更新中) 欢迎 watch/star/fork 我们的 GitHub 仓库: Awesome-SLAM, 或者follow 项目的主页:Awesome- ...
- 三维视觉、SLAM方向全球顶尖实验室汇总
本文作者 任旭倩,公众号:计算机视觉life,编辑成员 欧洲 英国伦敦大学帝国理工学院 Dyson 机器人实验室 http://www.imperial.ac.uk/dyson-robotics-la ...
- 基于视觉的 SLAM/Visual Odometry (VO) 开源资料、博客和论文列表
基于视觉的 SLAM/Visual Odometry (VO) 开源资料.博客和论文列表 以下为机器翻译,具体参考原文: https://github.com/tzutalin/awesome-vis ...
- DSO之光度标定
光度标定(Photometric Camera Calibration)是DSO(Direct Sparse Odometry)论文中比较特别的一部分.常规的vSLAM不太考虑光度标定的问题.比如基于 ...
- SLAM领域牛人、牛实验室、牛研究成果梳理
点击公众号"计算机视觉life"关注,置顶星标更快接收消息! 本文阅读时间约5分钟 对于小白来说,初入一个领域时最应该了解的当然是这个领域的研究现状啦.只有知道这个领域大家现在正在 ...
- 泡泡机器人SLAM 2019
LDSO:具有回环检测的直接稀疏里程计:LDSO:Direct Sparse Odometry with Loop Closure Abstract—In this paper we present ...
随机推荐
- Javascript中的回调函数和匿名函数的回调示例介绍
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- J20170426-hm
ジェネリクス Generics 泛型 バルーン balloon 气球 アングルブラケット Angle bracket 尖括号 プレースホルダ Placeholder 占位符
- SCUT - 249 - Hello World - 数位dp
https://scut.online/p/249 数位dp的模板题? 需要特殊判断0,这个很不优雅,因为0-1=-1是个很奇葩的东西? #include<bits/stdc++.h> u ...
- Codeforces - 1117E - Crisp String - 进制 - 交互
https://codeforces.com/problemset/problem/1117/E 就用abc表示数字来给每个数编码,编完直接问出移动的结果,反构造就行了,比C和D还简单. #inclu ...
- hdoj5024【BFS/暴力】
题意: 在可以行走的区域内,只能转一次90度的弯,问你最长这条路可以多长. 思路: 我们可以看到 /* 123 8 4 765 */ 转90度的路径会是横竖,也就是1-3-5-7; 还有斜的:2-4- ...
- hdu2767(图的强连通)
//题意:问需要添加几条边使得这张图成为每个点都等价(强连通图) 我们先把图中的强连通分量缩点 可能他本身就是满足条件,那么直接输出0 经过缩点后,就可以把强连通分量看成一个个独立的点,在这张图上搞一 ...
- RobotFrameWork自动化系列:安装配置
1. RobotFrameWork安装配置 1.1. 安装环境 64位win10家庭中文版 网上很多这方面的教程,但是比较零散,这里是自己安装配置的一个简单的笔记. 1.2. 安装说明 由于Rob ...
- Codeforces Round #405 (rated, Div. 2, based on VK Cup 2017 Round 1) E
Description Bear Limak prepares problems for a programming competition. Of course, it would be unpro ...
- .net excel 导入 导出
哎,好好的代码今天说来个实验,结果用的是office15 气死人了,网上最高office14.dll 文章转自2012年 QQ群:13615607 MR.Young protected void Bt ...
- 关于HashMap中hash()函数的思考
关于HashMap中hash()函数的思考 JDK7中hash函数的实现 static int hash(int h) { h ^= (h >>> 20) ^ (h >&g ...