2017多校Round3(hdu6056~hdu6066)
补题进度:7/11
1001
待填坑
1002
待填坑
1003(set)
题意:
给定长度为n(n<=5e5)的数组(是n的一个排列)和一个整数k(k<=80),f[l,r]定义为区间[l,r]内的第k大的数,求所有区间的f值的和
分析:
倒过来考虑,考虑每个数a[i]对答案有多少贡献
将n个数字从大到小依次插入对应位置,已经插入的当作障碍点(可以用set来维护)
那么对于一个i,可以枚举其左边有x个右边有k-x个去统计答案,因为k<=80,所以是OK的
注意边界情况
时间复杂度O(n(k+logn))
1004(01Trie树)
题意:
给一个长度为n(n<=5e5)的数组,问有多少个三元组满足
分析:
异或统计问题肯定想到01Trie树
最简单的想法就是我去枚举j,左右两边分别弄一个01Trie树,但仔细一想发现这样无法统计答案
我们发现一个规律,如果A[i]和A[k]的某一位不同(从高到低),那么A[j]这一位的值是固定的,一定和A[i]相同,和A[k]相反
实际上我们只需要将所有数从后往前加,即枚举i,去统计答案
对于一个确定的A[i],在Trie树上面爬,枚举A[i]和A[k]第一个不同位
——对于当前位A[k]与A[i]相同,继续向下走
——对于当前位A[k]与A[i]不同,那么就统计答案,这里我们可以确定该位A[j]的值为x,那么我们应该怎样求这样的A[j]的个数呢?
这里我们可以预处理,sum[i][j][0/1]表示前i个数中,第j位是0/1的数字有多少个
s[u]表示以节点u下面的所有单词节点作为A[k],前面一共有多少个j满足A[k]的这一位不同,这里可以通过倒着枚举i将A[i]插入的过程中,借助sum来完成
但是注意sum表示的前缀和,对于一个给定的i,我们Trie树节点的s[u]存的是前面所有的j的个数,那么j<i的是要删除的,所以统计答案的时候要减去当前这个子树底下k的个数*i前面的那些满足条件的j的个数
void insert(int p,int x)
{
int u=root;
for(int i=maxw;i>=;--i)
{
int d=((bit[i]&x)>);
if(!ch[u][d]) ch[u][d]=++len;
u=ch[u][d];
++num[u];
s[u]+=sum[p-][i][d^];
}
} ans=;
for(int i=n;i>=;--i)
{
int u=root;
for(int h=maxw;h>=;--h)
{
int d=((bit[h]&a[i])>);
if(ch[u][d^])
ans+=s[ch[u][d^]]-1LL*sum[i][h][d]*num[ch[u][d^]];
if(!ch[u][d]) break;
u=ch[u][d];
}
insert(i,a[i]);
}
1005(贪心)
题意:
给出一个n(n<=1000000)个的点的树,需要你将2~n分成k组
每一组的价值是{1}∪{这个组里所有点}这个集合里所有点组成的最小斯坦纳树的边权和
现在要让所有组的价值和最大
分析:
数据范围相当于提示你要用O(n)的方法
我们给2~n做编号1~k,编号相同的点分到一组
假设分块已经固定了,我们来思考如何统计答案
我们来考察每条边(u,fa[u])对答案的贡献
这个贡献一定是以u为根的子树中不同编号的种数
既然要让最后的总结果最大,我们肯定希望每条边(u,fa[u])对答案的贡献越大越好
即以u为根的子树中不同编号的点的个数越多越好
如果size[u]<=k,那就让它们编号互异,贡献个数是size[u]个
如果size[u]>k,那就让它们k个编号互异,然后剩下的构造相同的,贡献个数是k个
这只是我们的理论答案上界,不过手画画几组样例发现确实可以构造出这样的解,所以理论答案上界就是最后的答案
1006(NTT)
题意:
化简一个式子
分析:
无脑化简,到最后发现就是一个卷积
直接NTT
此处的卷积不再是i+j=k,而是i-j=k,将减法看成加一个负下标,错位处理一下就可以了,仍旧是基础的卷积
1007
待填坑
1008(找规律)
题意:
分析:
比赛时候找规律,发现最后结果就是n^k,快速幂一搞就行了
说一下为啥是n^k
一个整数x一定可以写成a*b^2 其中a是无平方因子数,即|μ(a)|=1
那么题目中这个式子相当于在枚举a,然后计算有多少个b
由于任意一个整数都可以写成这种式子,所以这种计算方式包含了1~n^k内所有的整数
所以答案就是n^k
1009
待填坑
1010(决策单调性优化DP)
题意:
给出n个点的树(n<=3e5)以及n的一个排列,现在你要将这个长度为n的排列分成k组(k<=3e5,n*k<=3e5),让所有组的价值和最小
一组的价值和是这组中所有点在树上的lca的深度
分析:
很典型的一个分段dp
可以很简单写出O(n^2k)的dp
计算价值可以通过O(1)来计算,因为a1,a2,...,am的lca不需要每次算出前缀的lca和后面一位做lca,这m个数的lca一定是lca(a1,a2) lca(a2,a3) ... lca(am-1,am)中深度最小的,于是就可以提前搞一个rmq
然后显然这种问题满足决策单调性,所以时间复杂度O(nklogn),这就能过了
还有一种更优秀的dp方法
我们把所有相邻位置的lca全部写出来,其实就是让我们挑选k个位置作为“关键位置”,这k个位置对结果贡献,其它位置对结果不贡献
dp[i][j]仍旧表示前i个数中挑出j个数作为“关键位置”的最小代价
①当前位置不作为“关键位置” dp[i][j]=dp[i-1][j]
②当前位置作为一个新的“关键位置" dp[i][j]=dp[i-2][j-1]+lca(a[i-1],a[i])
还要注意一点,就是可能某个位置单独作为一块
③dp[i][j]=dp[i-1][j-1]+a[i]
所有的取min就行了
时间复杂度O(nk)
1011(模拟)
略
2017多校Round3(hdu6056~hdu6066)的更多相关文章
- 2017 多校5 hdu 6093 Rikka with Number
2017 多校5 Rikka with Number(数学 + 数位dp) 题意: 统计\([L,R]\)内 有多少数字 满足在某个\(d(d>=2)\)进制下是\(d\)的全排列的 \(1 & ...
- 2017 多校5 Rikka with String
2017 多校5 Rikka with String(ac自动机+dp) 题意: Yuta has \(n\) \(01\) strings \(s_i\), and he wants to know ...
- 2017 多校4 Wavel Sequence
2017 多校4 Wavel Sequence 题意: Formally, he defines a sequence \(a_1,a_2,...,a_n\) as ''wavel'' if and ...
- 2017 多校4 Security Check
2017 多校4 Security Check 题意: 有\(A_i\)和\(B_i\)两个长度为\(n\)的队列过安检,当\(|A_i-B_j|>K\)的时候, \(A_i和B_j\)是可以同 ...
- 2017 多校3 hdu 6061 RXD and functions
2017 多校3 hdu 6061 RXD and functions(FFT) 题意: 给一个函数\(f(x)=\sum_{i=0}^{n}c_i \cdot x^{i}\) 求\(g(x) = f ...
- 2017 多校2 hdu 6053 TrickGCD
2017 多校2 hdu 6053 TrickGCD 题目: You are given an array \(A\) , and Zhu wants to know there are how ma ...
- 2017 多校1 I Curse Myself
2017 多校2 I Curse Myself(第k小生成树) 题目: 给一张带权无向连通图,该图的任意一条边最多只会经过一个简单环,定义\(V(k)为第k小生成树的权值和\),求出\(\sum_{k ...
- hdu6136[模拟+优先队列] 2017多校8
有点麻烦.. /*hdu6136[模拟+优先队列] 2017多校8*/ #include <bits/stdc++.h> using namespace std; typedef long ...
- hdu6134[莫比乌斯反演] 2017多校8
/*hdu6134[莫比乌斯反演] 2017多校8*/ #include <bits/stdc++.h> using namespace std; typedef long long LL ...
随机推荐
- C# 移动开发(Xamarin.Form) Plugin.BLE 蓝牙连接
随着Xamarin.Form项目接近尾声,仔细一算才发现过来大半年时间了. 期间除了刚开始有闲情写写,现在总算有空来总结一下了. 来先说 Plugin.BLE (https://github.com/ ...
- 在proe模型文件里面存储用户数据
存储外部数据 author:visualsan 2014.2 上海 1.简介 利用外部数据存储外部接口,可以在模型文件里面尺寸用户自定义数据.在模型保存时数据自动存储,在模型载入时数据自动载入.外部数 ...
- DROP SEQUENCE - 删除一个序列
SYNOPSIS DROP SEQUENCE name [, ...] [ CASCADE | RESTRICT ] DESCRIPTION 描述 DROP SEQUENCE 从数据库中删除序列号生成 ...
- CAD交互绘制圆弧(网页版)
在CAD设计时,需要绘制圆弧,用户可以在图面点圆弧起点,圆弧上的一点和圆弧的终点,这样就绘制出圆弧. 主要用到函数说明: _DMxDrawX::DrawArc2 由圆弧上的三点绘制一个圆弧.详细说明如 ...
- pooling需要注意的一个地方
max pooling 在不同的 depth 上是分开执行的,且不需要参数控制.也就是说,pooling之后,feature map的维度不会改变
- OpenCV2:第二章 创建图像并显示
一.简介 相当于在PS中,新建一个画布 二.CvMat类/LPLImage和CvMat结构体 参考: OpenCV2:第一章 图像表示 三.create() Mat m(2,2,CV_8UC3); m ...
- eclipse修改SVN账号密码
首先,eclipse中打开window------>preferences------->SVN页面,如下所示: 注意我圈起来的地方,JavaHL是不可用的,因此SVN接口应该是SVNKi ...
- UVM入坑系列笔记(一)
最近本人在做毕业设计,需要用到UVM搭建验证平台,故在网上查找相关资料,看了一些博客和科普,多少有些收获,记录在这里,以便以后复习查看.以下是本人根据网上学习资料整理的笔记,如果有什么不对的地方欢迎指 ...
- Linux的硬件时间、校正Linux系统时间及系统时间调用流程
第一部分: 一)概述: 事实上在Linux中有两个时钟系统,分别是系统时间和硬件时间 UTC是协调世界时(Universal Time Coordinated)英文缩写,它比北京时间早8个小时. ...
- Python通过Openpyxl包汇总表格,效率提升100倍
最近找了份小兼职,干的全是些无聊的工作,比如说给word调整一下排版啦.把从多方回收来的Excel汇总啦,这些极其催眠又耗时的事,怎么能接受手动去做呢!!(疯了嘛,谁知道以后还有多少类似的表格要汇总啊 ...