LeetCode 原题链接

题目大意

  1. 给定一棵二叉树的中序遍历和后序遍历,求这棵二叉树的结构。
  2. 给定一棵二叉树的前序遍历和中序遍历,求这棵二叉树的结构。

样例

  1. Input: inorder = [9, 3, 15, 20, 7], postorder = [9, 15, 7, 20, 3]
    Output: [3, 9, 20, null, null, 15, 7]
  2. Input: preorder = [3, 9, 20, 15, 7], postorder = [9, 3, 15, 20, 7]
    Output: [3, 9, 20, null, null, 15, 7]

解题思路

这两题的解题思路类似,主要应用了二叉树的这样一个结论:

对于任意一棵二叉树:

  • 其前序遍历序列的第一个元素为该树的根
  • 其后序遍历序列的最后一个元素为该树的根

然后对于一棵二叉树的遍历序列,其元素排布总是遵循如下规律:

  • 前序遍历:[根元素, [左子树元素], [右子树元素]]
  • 中序遍历:[[左子树元素], 根元素, [右子树元素]]
  • 后序遍历:[[左子树元素], [右子树元素], 根元素]

有了以上结论,这两题的思路就很明确了:先从前序(或后序)遍历中找到根元素,然后将遍历结果按照上面的元素分布规律分成三个部分,对于左子树和右子树,递归地调用该算法去构建,即可得出完整的结构。

根据以上思路,可以写出对数组进行分割的代码,记录如下:

  • 前序遍历:

    /// <summary>
    /// 把二叉树的前序遍历序列分拆成左右两部分
    /// 左右两部分中,若有一个部分不存在,则返回长度为 0 的数组
    ///
    /// 在调用该方法前,需要提前为左右两部分的数组分配空间(即需要左右子树的序列大小)
    /// </summary>
    /// <param name="sourceArray">一个数组,表示二叉树的前序遍历序列</param>
    /// <param name="leftPart">一个数组,表示这棵树的左子树的前序遍历序列</param>
    /// <param name="rightPart">一个数组,表示这棵树的右子树的前序遍历序列</param>
    private void SplitArray(int[] sourceArray, int[] leftPart, int[] rightPart)
    {
    // 对于前序遍历,各部分对应的下标范围为:
    // - [0, 1):根节点
    // - [1, 1 + leftPart.Length):左子树的前序遍历序列
    // - [1 + leftPart.Length, sourceArray.Length):右子树的遍历序列 // 复制左子树内容
    Array.Copy(sourceArray, 1, leftPart, 0, leftPart.Length);
    // 复制右子树内容
    Array.Copy(sourceArray, 1 + leftPart.Length, rightPart, 0, rightPart.Length);
    }
  • 中序遍历:

    /// <summary>
    /// 把二叉树的中序遍历序列分拆成左右两部分
    /// 左右两部分中,若有一个部分不存在,则返回长度为 0 的数组
    /// </summary>
    /// <param name="sourceArray">一个数组,表示二叉树的中序遍历序列</param>
    /// <param name="splitIndex">这棵二叉树的根节点,在中序遍历序列中的下标</param>
    /// <param name="leftPart">输出参数,表示这棵树的左子树的中序遍历序列</param>
    /// <param name="rightPart">输出参数,表示这棵树的右子树的中序遍历序列</param>
    void SplitArray(int[] sourceArray, int splitIndex, out int[] leftPart, out int[] rightPart)
    {
    // 为左右两部分分配空间
    // 对于中序遍历,各部分对应的下标范围为
    // - [0, splitIndex):左子树的中序遍历序列
    // - [splitIndex, splitIndex + 1):根节点
    // - [splitIndex + 1, sourceArray.Length):右子树的中序遍历序列
    leftPart = new int[splitIndex];
    rightPart = new int[sourceArray.Length - (splitIndex + 1)]; // 复制左子树内容
    Array.Copy(sourceArray, leftPart, leftPart.Length); // 复制右子树内容
    Array.Copy(sourceArray, splitIndex + 1, rightPart, 0, rightPart.Length);
    }
  • 后序遍历:

    /// <summary>
    /// 把二叉树的后序遍历序列分拆成左右两部分
    /// 左右两部分中,若有一个部分不存在,则返回长度为 0 的数组
    ///
    /// 在调用该方法前,需要提前为左右两部分的数组分配空间(即需要左右子树的序列大小)
    /// </summary>
    /// <param name="sourceArray">一个数组,表示二叉树的后序遍历序列</param>
    /// <param name="leftPart">一个数组,表示这棵树的左子树的后序遍历序列</param>
    /// <param name="rightPart">一个数组,表示这棵树的右子树的后序遍历序列</param>
    void SplitArray(int[] sourceArray, int[] leftPart, int[] rightPart)
    {
    // 对于后序遍历,各部分对应的下标范围为:
    // - [0, leftPart.Length):左子树的后序遍历
    // - [leftPart.Length, leftPart.Length + rightPart.Length):右子树的后序遍历
    // - [leftPart.Length + rightPart.Length, sourceArray.Length):根节点 // 复制左子树内容
    Array.Copy(sourceArray, leftPart, leftPart.Length);
    // 复制右子树内容
    Array.Copy(sourceArray, leftPart.Length, rightPart, 0, rightPart.Length);
    }

Solution

  • Construct Binary Tree from Inorder and Postorder Traversal

    /// <summary>
    /// 根据二叉树的中序遍历序列和后序遍历序列,构建这棵二叉树
    /// </summary>
    /// <param name="inorder">一个数组,表示二叉树的中序遍历序列</param>
    /// <param name="postorder">一个数组,表示二叉树的后序遍历序列</param>
    /// <returns>构建出的二叉树的根节点</returns>
    public TreeNode BuildTree(int[] inorder, int[] postorder)
    {
    // 递归终止条件:序列的长度为 0,返回 null
    if (inorder.Length == 0 || postorder.Length == 0)
    return null;
    // 从后序遍历序列中找到根节点的值
    int rootVal = postorder.Last();
    // 在中序遍历序列中找到根节点对应的下标,以便分出左右部分
    int rootIndex = Array.IndexOf(inorder, rootVal); // 提前为后序遍历的两部分分配内存空间
    int[] postorderLeft = new int[rootIndex - 0];
    int[] postorderRight = new int[inorder.Length - (rootIndex + 1)]; // 建立根节点
    TreeNode root = new TreeNode(rootVal); // 拆分中序遍历序列
    SplitArray(inorder, rootIndex, out int[] inorderLeft, out int[] inorderRight); // 拆分后序遍历序列
    SplitArray(postorder, postorderLeft, postorderRight); // 递归地调用该方法以构建左右子树
    root.left = BuildTree(inorderLeft, postorderLeft);
    root.right = BuildTree(inorderRight, postorderRight); return root;
    }
  • Construct Binary Tree from Preorder and Inorder Traversal

    /// <summary>
    /// 根据二叉树的中序遍历序列和前序遍历序列,构建这棵二叉树
    /// </summary>
    /// <param name="preorder">一个数组,表示二叉树的前序遍历序列</param>
    /// <param name="inorder">一个数组,表示二叉树的中序遍历序列</param>
    /// <returns>构建出的二叉树的根节点</returns>
    public TreeNode BuildTree(int[] preorder, int[] inorder)
    {
    // 递归终止条件:序列的长度为 0,返回 null
    if (inorder.Length == 0 || preorder.Length == 0)
    return null;
    // 从前序遍历序列中找到根节点的值
    int rootVal = preorder[0];
    // 在中序遍历序列中找到根节点对应的下标,以便分出左右部分
    int rootIndex = Array.IndexOf(inorder, rootVal); // 提前为前序遍历的两部分分配内存空间
    int[] preorderLeft = new int[rootIndex - 0];
    int[] preorderRight = new int[inorder.Length - (rootIndex + 1)]; // 建立根节点
    TreeNode root = new TreeNode(rootVal); // 拆分中序遍历序列
    SplitArray(inorder, rootIndex, out int[] inorderLeft, out int[] inorderRight); // 拆分前序遍历序列
    SplitArray(preorder, preorderLeft, preorderRight); // 递归地调用该方法以构建左右子树
    root.left = BuildTree(preorderLeft, inorderLeft);
    root.right = BuildTree(preorderRight, inorderRight); return root;
    }

【题解二连发】Construct Binary Tree from Inorder and Postorder Traversal & Construct Binary Tree from Preorder and Inorder Traversal的更多相关文章

  1. Leetcode Construct Binary Tree from Inorder and Postorder Traversal

    Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  2. 【LeetCode OJ】Construct Binary Tree from Inorder and Postorder Traversal

    Problem Link: https://oj.leetcode.com/problems/construct-binary-tree-from-inorder-and-postorder-trav ...

  3. leetcode-1006 Construct Binary Tree from Inorder and Postorder Traversal

    Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  4. 【LeetCode】106. Construct Binary Tree from Inorder and Postorder Traversal

    Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder traversal of ...

  5. [LeetCode-21]Construct Binary Tree from Preorder and Inorder Traversal

    Given preorder and inorder traversal of a tree, construct the binary tree. Note: You may assume that ...

  6. leetcode题解:Construct Binary Tree from Preorder and Inorder Traversal (根据前序和中序遍历构造二叉树)

    题目: Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume t ...

  7. leetcode题解:Construct Binary Tree from Inorder and Postorder Traversal(根据中序和后序遍历构造二叉树)

    题目: Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume ...

  8. [LeetCode] Construct Binary Tree from Inorder and Postorder Traversal 由中序和后序遍历建立二叉树

    Given inorder and postorder traversal of a tree, construct the binary tree. Note: You may assume tha ...

  9. 【LeetCode】105 & 106. Construct Binary Tree from Inorder and Postorder Traversal

    题目: Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume ...

随机推荐

  1. Hadoop 管理工具HUE配置-HBase配置

    1 前言 首先要陪只好HBase,可以参见http://www.cnblogs.com/liuchangchun/p/4096891.html,完全分布式类似 2 HBase配置 2.1 HUE 配置 ...

  2. version `GLIBC_2.17' not found 解决方法

    1.先查看是哪个函数用的是GLIBC_2.17 root@emb-pc:/home/emb/temp# nm lib61850.so | grep GLIBC_2.17 U clock_gettime ...

  3. Javascrip错误类型

    Javascrip一旦发现错误,会自动创建一个Error类型对象. Javascrip中有几种错误类型?六种1.SyntaxError 语法错误2.ReferenceError 引用错误3.TypeE ...

  4. 理解OpenShift(5):从 Docker Volume 到 OpenShift Persistent Volume

    理解OpenShift(1):网络之 Router 和 Route 理解OpenShift(2):网络之 DNS(域名服务) 理解OpenShift(3):网络之 SDN 理解OpenShift(4) ...

  5. Unity 三角函数 向量 运算

    其实三维的和二维的基本差不多,一样的运算方式,unity已经把所有的方法都封装起来,主要是理解,能理解了就直接调用了 三角函数 知识点:三角函数基础正玄余玄.三角函数曲线.弧度制和角度制.弧度制和角度 ...

  6. Skyline TerraExplorer 7.0- 扩展信息树

    Skyline TerraExplorer V7增加了一个扩展信息树的控件TEInformationWindowEx.  该控件能够将TE3DWindowEx窗口里面的对象显示为信息树的方式.TEIn ...

  7. jenkins使用git拉取gitlab代码

    1 在安装jenkins的主机上新加一个jenkins用户, 切换到jenkins用户登录, 生成公钥私钥ssh-keygen -t rsa -C "your email" -f ...

  8. 初识git(17/8/21)

    git是一个分布式的版本管理系统 通过廖雪峰的官方网站(maybe2017)来学习的,比较详实跟着操作就行,记录基本的一些命令还有学习是遇到的一些问题和收获,方便下次查阅. git的安装 -. win ...

  9. MIUI6系统详细卡刷开发版获得root权限的经验

    小米的手机不同手机型号通常情况miui论坛都提供两个不同的版本,分别为稳定版和开发版,稳定版没有提供ROOT权限管理,开发版中就开启了ROOT权限,很多情况下我们需要使用的一些功能强大的App,都需要 ...

  10. Odoo二次开发

    Odoo 点击进入