LeetCode 原题链接

题目大意

  1. 给定一棵二叉树的中序遍历和后序遍历,求这棵二叉树的结构。
  2. 给定一棵二叉树的前序遍历和中序遍历,求这棵二叉树的结构。

样例

  1. Input: inorder = [9, 3, 15, 20, 7], postorder = [9, 15, 7, 20, 3]
    Output: [3, 9, 20, null, null, 15, 7]
  2. Input: preorder = [3, 9, 20, 15, 7], postorder = [9, 3, 15, 20, 7]
    Output: [3, 9, 20, null, null, 15, 7]

解题思路

这两题的解题思路类似,主要应用了二叉树的这样一个结论:

对于任意一棵二叉树:

  • 其前序遍历序列的第一个元素为该树的根
  • 其后序遍历序列的最后一个元素为该树的根

然后对于一棵二叉树的遍历序列,其元素排布总是遵循如下规律:

  • 前序遍历:[根元素, [左子树元素], [右子树元素]]
  • 中序遍历:[[左子树元素], 根元素, [右子树元素]]
  • 后序遍历:[[左子树元素], [右子树元素], 根元素]

有了以上结论,这两题的思路就很明确了:先从前序(或后序)遍历中找到根元素,然后将遍历结果按照上面的元素分布规律分成三个部分,对于左子树和右子树,递归地调用该算法去构建,即可得出完整的结构。

根据以上思路,可以写出对数组进行分割的代码,记录如下:

  • 前序遍历:

    /// <summary>
    /// 把二叉树的前序遍历序列分拆成左右两部分
    /// 左右两部分中,若有一个部分不存在,则返回长度为 0 的数组
    ///
    /// 在调用该方法前,需要提前为左右两部分的数组分配空间(即需要左右子树的序列大小)
    /// </summary>
    /// <param name="sourceArray">一个数组,表示二叉树的前序遍历序列</param>
    /// <param name="leftPart">一个数组,表示这棵树的左子树的前序遍历序列</param>
    /// <param name="rightPart">一个数组,表示这棵树的右子树的前序遍历序列</param>
    private void SplitArray(int[] sourceArray, int[] leftPart, int[] rightPart)
    {
    // 对于前序遍历,各部分对应的下标范围为:
    // - [0, 1):根节点
    // - [1, 1 + leftPart.Length):左子树的前序遍历序列
    // - [1 + leftPart.Length, sourceArray.Length):右子树的遍历序列 // 复制左子树内容
    Array.Copy(sourceArray, 1, leftPart, 0, leftPart.Length);
    // 复制右子树内容
    Array.Copy(sourceArray, 1 + leftPart.Length, rightPart, 0, rightPart.Length);
    }
  • 中序遍历:

    /// <summary>
    /// 把二叉树的中序遍历序列分拆成左右两部分
    /// 左右两部分中,若有一个部分不存在,则返回长度为 0 的数组
    /// </summary>
    /// <param name="sourceArray">一个数组,表示二叉树的中序遍历序列</param>
    /// <param name="splitIndex">这棵二叉树的根节点,在中序遍历序列中的下标</param>
    /// <param name="leftPart">输出参数,表示这棵树的左子树的中序遍历序列</param>
    /// <param name="rightPart">输出参数,表示这棵树的右子树的中序遍历序列</param>
    void SplitArray(int[] sourceArray, int splitIndex, out int[] leftPart, out int[] rightPart)
    {
    // 为左右两部分分配空间
    // 对于中序遍历,各部分对应的下标范围为
    // - [0, splitIndex):左子树的中序遍历序列
    // - [splitIndex, splitIndex + 1):根节点
    // - [splitIndex + 1, sourceArray.Length):右子树的中序遍历序列
    leftPart = new int[splitIndex];
    rightPart = new int[sourceArray.Length - (splitIndex + 1)]; // 复制左子树内容
    Array.Copy(sourceArray, leftPart, leftPart.Length); // 复制右子树内容
    Array.Copy(sourceArray, splitIndex + 1, rightPart, 0, rightPart.Length);
    }
  • 后序遍历:

    /// <summary>
    /// 把二叉树的后序遍历序列分拆成左右两部分
    /// 左右两部分中,若有一个部分不存在,则返回长度为 0 的数组
    ///
    /// 在调用该方法前,需要提前为左右两部分的数组分配空间(即需要左右子树的序列大小)
    /// </summary>
    /// <param name="sourceArray">一个数组,表示二叉树的后序遍历序列</param>
    /// <param name="leftPart">一个数组,表示这棵树的左子树的后序遍历序列</param>
    /// <param name="rightPart">一个数组,表示这棵树的右子树的后序遍历序列</param>
    void SplitArray(int[] sourceArray, int[] leftPart, int[] rightPart)
    {
    // 对于后序遍历,各部分对应的下标范围为:
    // - [0, leftPart.Length):左子树的后序遍历
    // - [leftPart.Length, leftPart.Length + rightPart.Length):右子树的后序遍历
    // - [leftPart.Length + rightPart.Length, sourceArray.Length):根节点 // 复制左子树内容
    Array.Copy(sourceArray, leftPart, leftPart.Length);
    // 复制右子树内容
    Array.Copy(sourceArray, leftPart.Length, rightPart, 0, rightPart.Length);
    }

Solution

  • Construct Binary Tree from Inorder and Postorder Traversal

    /// <summary>
    /// 根据二叉树的中序遍历序列和后序遍历序列,构建这棵二叉树
    /// </summary>
    /// <param name="inorder">一个数组,表示二叉树的中序遍历序列</param>
    /// <param name="postorder">一个数组,表示二叉树的后序遍历序列</param>
    /// <returns>构建出的二叉树的根节点</returns>
    public TreeNode BuildTree(int[] inorder, int[] postorder)
    {
    // 递归终止条件:序列的长度为 0,返回 null
    if (inorder.Length == 0 || postorder.Length == 0)
    return null;
    // 从后序遍历序列中找到根节点的值
    int rootVal = postorder.Last();
    // 在中序遍历序列中找到根节点对应的下标,以便分出左右部分
    int rootIndex = Array.IndexOf(inorder, rootVal); // 提前为后序遍历的两部分分配内存空间
    int[] postorderLeft = new int[rootIndex - 0];
    int[] postorderRight = new int[inorder.Length - (rootIndex + 1)]; // 建立根节点
    TreeNode root = new TreeNode(rootVal); // 拆分中序遍历序列
    SplitArray(inorder, rootIndex, out int[] inorderLeft, out int[] inorderRight); // 拆分后序遍历序列
    SplitArray(postorder, postorderLeft, postorderRight); // 递归地调用该方法以构建左右子树
    root.left = BuildTree(inorderLeft, postorderLeft);
    root.right = BuildTree(inorderRight, postorderRight); return root;
    }
  • Construct Binary Tree from Preorder and Inorder Traversal

    /// <summary>
    /// 根据二叉树的中序遍历序列和前序遍历序列,构建这棵二叉树
    /// </summary>
    /// <param name="preorder">一个数组,表示二叉树的前序遍历序列</param>
    /// <param name="inorder">一个数组,表示二叉树的中序遍历序列</param>
    /// <returns>构建出的二叉树的根节点</returns>
    public TreeNode BuildTree(int[] preorder, int[] inorder)
    {
    // 递归终止条件:序列的长度为 0,返回 null
    if (inorder.Length == 0 || preorder.Length == 0)
    return null;
    // 从前序遍历序列中找到根节点的值
    int rootVal = preorder[0];
    // 在中序遍历序列中找到根节点对应的下标,以便分出左右部分
    int rootIndex = Array.IndexOf(inorder, rootVal); // 提前为前序遍历的两部分分配内存空间
    int[] preorderLeft = new int[rootIndex - 0];
    int[] preorderRight = new int[inorder.Length - (rootIndex + 1)]; // 建立根节点
    TreeNode root = new TreeNode(rootVal); // 拆分中序遍历序列
    SplitArray(inorder, rootIndex, out int[] inorderLeft, out int[] inorderRight); // 拆分前序遍历序列
    SplitArray(preorder, preorderLeft, preorderRight); // 递归地调用该方法以构建左右子树
    root.left = BuildTree(preorderLeft, inorderLeft);
    root.right = BuildTree(preorderRight, inorderRight); return root;
    }

【题解二连发】Construct Binary Tree from Inorder and Postorder Traversal & Construct Binary Tree from Preorder and Inorder Traversal的更多相关文章

  1. Leetcode Construct Binary Tree from Inorder and Postorder Traversal

    Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  2. 【LeetCode OJ】Construct Binary Tree from Inorder and Postorder Traversal

    Problem Link: https://oj.leetcode.com/problems/construct-binary-tree-from-inorder-and-postorder-trav ...

  3. leetcode-1006 Construct Binary Tree from Inorder and Postorder Traversal

    Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume that ...

  4. 【LeetCode】106. Construct Binary Tree from Inorder and Postorder Traversal

    Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder traversal of ...

  5. [LeetCode-21]Construct Binary Tree from Preorder and Inorder Traversal

    Given preorder and inorder traversal of a tree, construct the binary tree. Note: You may assume that ...

  6. leetcode题解:Construct Binary Tree from Preorder and Inorder Traversal (根据前序和中序遍历构造二叉树)

    题目: Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume t ...

  7. leetcode题解:Construct Binary Tree from Inorder and Postorder Traversal(根据中序和后序遍历构造二叉树)

    题目: Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume ...

  8. [LeetCode] Construct Binary Tree from Inorder and Postorder Traversal 由中序和后序遍历建立二叉树

    Given inorder and postorder traversal of a tree, construct the binary tree. Note: You may assume tha ...

  9. 【LeetCode】105 & 106. Construct Binary Tree from Inorder and Postorder Traversal

    题目: Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume ...

随机推荐

  1. Linux运维小知识

    自己日常用到的命令稍微备份一下: 版本确认 CentOS / RedHat Enterprise cat /etc/redhat-release Ubuntu cat /etc/lsb-release ...

  2. H264--2--语法及结构

    转自:http://blog.csdn.net/yangzhongxuan/article/details/8003494 名词解释 场和帧 :    视频的一场或一帧可用来产生一个编码图像.在电视中 ...

  3. MYSQL登录函数(第3版本)

    已经改进 CREATE DEFINER=`root`@`%` FUNCTION `uc_session_login`( `reqjson` JSON, `srvjson` JSON ) RETURNS ...

  4. 图片支持get请求访问

    BufferedInputStream in = new BufferedInputStream(doc2.getContent());//读取文件到输入流 OutputStream out = re ...

  5. Linux(CentOS)用户修改密码有效期(chage命令)

    Linux设置用户密码的有效期限 解决: 先查看密码过期时间,现在是90天 1 2 3 4 5 6 7 8 [root@01 ~]# chage -l testuser Last password c ...

  6. 一则ORACLE进程都在但是无法进入实例的问题

    [oracle@localhost ~]$ ps -ef|grep smonoracle 14809 1 0 Sep25 ? 00:13:02 ora_smon_mailp3[oracle@local ...

  7. pandas学习笔记(一)

    Pandas是一款开放源码的BSD许可的Python库,为Python编程语言提供了高性能,易于使用的数据结构和数据分析工具.Pandas用于广泛的领域,包括金融,经济,统计,分析等学术和商业领域.在 ...

  8. 乘法DAC一点知识

    在应用电路中发现乘法DAC,以前没有用过所谓的乘法DAC.查过资料发现,其实所有的DAC都可以看作是个“乘法器”-------将输入数字量与基准电压相乘. 一般DAC的输出是VOUT=VREF*D/M ...

  9. 理解Linux文件权限

    任何完整的系统都应该具备有某种形式的安全性.必须用过某种机制来保护文件不被未授权的用户查看或修改:Linux系统遵循了Unix的文件权限的方法,来根据用户与用户组授权,实现文件安全访问. 1.Linu ...

  10. 我和blog的初次接触

    这是我的第一篇bolg! 进击的小白,要加油哇!