【题解二连发】Construct Binary Tree from Inorder and Postorder Traversal & Construct Binary Tree from Preorder and Inorder Traversal
LeetCode 原题链接
- Construct Binary Tree from Inorder and Postorder Traversal - LeetCode
- Construct Binary Tree from Preorder and Postorder Traversal - LeetCode
题目大意
- 给定一棵二叉树的中序遍历和后序遍历,求这棵二叉树的结构。
- 给定一棵二叉树的前序遍历和中序遍历,求这棵二叉树的结构。
样例
Input: inorder = [9, 3, 15, 20, 7], postorder = [9, 15, 7, 20, 3]
Output: [3, 9, 20, null, null, 15, 7]
Input: preorder = [3, 9, 20, 15, 7], postorder = [9, 3, 15, 20, 7]
Output: [3, 9, 20, null, null, 15, 7]
解题思路
这两题的解题思路类似,主要应用了二叉树的这样一个结论:
对于任意一棵二叉树:
- 其前序遍历序列的第一个元素为该树的根
- 其后序遍历序列的最后一个元素为该树的根
然后对于一棵二叉树的遍历序列,其元素排布总是遵循如下规律:
- 前序遍历:
[根元素, [左子树元素], [右子树元素]]
- 中序遍历:
[[左子树元素], 根元素, [右子树元素]]
- 后序遍历:
[[左子树元素], [右子树元素], 根元素]
有了以上结论,这两题的思路就很明确了:先从前序(或后序)遍历中找到根元素,然后将遍历结果按照上面的元素分布规律分成三个部分,对于左子树和右子树,递归地调用该算法去构建,即可得出完整的结构。
根据以上思路,可以写出对数组进行分割的代码,记录如下:
前序遍历:
/// <summary>
/// 把二叉树的前序遍历序列分拆成左右两部分
/// 左右两部分中,若有一个部分不存在,则返回长度为 0 的数组
///
/// 在调用该方法前,需要提前为左右两部分的数组分配空间(即需要左右子树的序列大小)
/// </summary>
/// <param name="sourceArray">一个数组,表示二叉树的前序遍历序列</param>
/// <param name="leftPart">一个数组,表示这棵树的左子树的前序遍历序列</param>
/// <param name="rightPart">一个数组,表示这棵树的右子树的前序遍历序列</param>
private void SplitArray(int[] sourceArray, int[] leftPart, int[] rightPart)
{
// 对于前序遍历,各部分对应的下标范围为:
// - [0, 1):根节点
// - [1, 1 + leftPart.Length):左子树的前序遍历序列
// - [1 + leftPart.Length, sourceArray.Length):右子树的遍历序列 // 复制左子树内容
Array.Copy(sourceArray, 1, leftPart, 0, leftPart.Length);
// 复制右子树内容
Array.Copy(sourceArray, 1 + leftPart.Length, rightPart, 0, rightPart.Length);
}
中序遍历:
/// <summary>
/// 把二叉树的中序遍历序列分拆成左右两部分
/// 左右两部分中,若有一个部分不存在,则返回长度为 0 的数组
/// </summary>
/// <param name="sourceArray">一个数组,表示二叉树的中序遍历序列</param>
/// <param name="splitIndex">这棵二叉树的根节点,在中序遍历序列中的下标</param>
/// <param name="leftPart">输出参数,表示这棵树的左子树的中序遍历序列</param>
/// <param name="rightPart">输出参数,表示这棵树的右子树的中序遍历序列</param>
void SplitArray(int[] sourceArray, int splitIndex, out int[] leftPart, out int[] rightPart)
{
// 为左右两部分分配空间
// 对于中序遍历,各部分对应的下标范围为
// - [0, splitIndex):左子树的中序遍历序列
// - [splitIndex, splitIndex + 1):根节点
// - [splitIndex + 1, sourceArray.Length):右子树的中序遍历序列
leftPart = new int[splitIndex];
rightPart = new int[sourceArray.Length - (splitIndex + 1)]; // 复制左子树内容
Array.Copy(sourceArray, leftPart, leftPart.Length); // 复制右子树内容
Array.Copy(sourceArray, splitIndex + 1, rightPart, 0, rightPart.Length);
}
后序遍历:
/// <summary>
/// 把二叉树的后序遍历序列分拆成左右两部分
/// 左右两部分中,若有一个部分不存在,则返回长度为 0 的数组
///
/// 在调用该方法前,需要提前为左右两部分的数组分配空间(即需要左右子树的序列大小)
/// </summary>
/// <param name="sourceArray">一个数组,表示二叉树的后序遍历序列</param>
/// <param name="leftPart">一个数组,表示这棵树的左子树的后序遍历序列</param>
/// <param name="rightPart">一个数组,表示这棵树的右子树的后序遍历序列</param>
void SplitArray(int[] sourceArray, int[] leftPart, int[] rightPart)
{
// 对于后序遍历,各部分对应的下标范围为:
// - [0, leftPart.Length):左子树的后序遍历
// - [leftPart.Length, leftPart.Length + rightPart.Length):右子树的后序遍历
// - [leftPart.Length + rightPart.Length, sourceArray.Length):根节点 // 复制左子树内容
Array.Copy(sourceArray, leftPart, leftPart.Length);
// 复制右子树内容
Array.Copy(sourceArray, leftPart.Length, rightPart, 0, rightPart.Length);
}
Solution
Construct Binary Tree from Inorder and Postorder Traversal
/// <summary>
/// 根据二叉树的中序遍历序列和后序遍历序列,构建这棵二叉树
/// </summary>
/// <param name="inorder">一个数组,表示二叉树的中序遍历序列</param>
/// <param name="postorder">一个数组,表示二叉树的后序遍历序列</param>
/// <returns>构建出的二叉树的根节点</returns>
public TreeNode BuildTree(int[] inorder, int[] postorder)
{
// 递归终止条件:序列的长度为 0,返回 null
if (inorder.Length == 0 || postorder.Length == 0)
return null;
// 从后序遍历序列中找到根节点的值
int rootVal = postorder.Last();
// 在中序遍历序列中找到根节点对应的下标,以便分出左右部分
int rootIndex = Array.IndexOf(inorder, rootVal); // 提前为后序遍历的两部分分配内存空间
int[] postorderLeft = new int[rootIndex - 0];
int[] postorderRight = new int[inorder.Length - (rootIndex + 1)]; // 建立根节点
TreeNode root = new TreeNode(rootVal); // 拆分中序遍历序列
SplitArray(inorder, rootIndex, out int[] inorderLeft, out int[] inorderRight); // 拆分后序遍历序列
SplitArray(postorder, postorderLeft, postorderRight); // 递归地调用该方法以构建左右子树
root.left = BuildTree(inorderLeft, postorderLeft);
root.right = BuildTree(inorderRight, postorderRight); return root;
}
Construct Binary Tree from Preorder and Inorder Traversal
/// <summary>
/// 根据二叉树的中序遍历序列和前序遍历序列,构建这棵二叉树
/// </summary>
/// <param name="preorder">一个数组,表示二叉树的前序遍历序列</param>
/// <param name="inorder">一个数组,表示二叉树的中序遍历序列</param>
/// <returns>构建出的二叉树的根节点</returns>
public TreeNode BuildTree(int[] preorder, int[] inorder)
{
// 递归终止条件:序列的长度为 0,返回 null
if (inorder.Length == 0 || preorder.Length == 0)
return null;
// 从前序遍历序列中找到根节点的值
int rootVal = preorder[0];
// 在中序遍历序列中找到根节点对应的下标,以便分出左右部分
int rootIndex = Array.IndexOf(inorder, rootVal); // 提前为前序遍历的两部分分配内存空间
int[] preorderLeft = new int[rootIndex - 0];
int[] preorderRight = new int[inorder.Length - (rootIndex + 1)]; // 建立根节点
TreeNode root = new TreeNode(rootVal); // 拆分中序遍历序列
SplitArray(inorder, rootIndex, out int[] inorderLeft, out int[] inorderRight); // 拆分前序遍历序列
SplitArray(preorder, preorderLeft, preorderRight); // 递归地调用该方法以构建左右子树
root.left = BuildTree(preorderLeft, inorderLeft);
root.right = BuildTree(preorderRight, inorderRight); return root;
}
【题解二连发】Construct Binary Tree from Inorder and Postorder Traversal & Construct Binary Tree from Preorder and Inorder Traversal的更多相关文章
- Leetcode Construct Binary Tree from Inorder and Postorder Traversal
Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume that ...
- 【LeetCode OJ】Construct Binary Tree from Inorder and Postorder Traversal
Problem Link: https://oj.leetcode.com/problems/construct-binary-tree-from-inorder-and-postorder-trav ...
- leetcode-1006 Construct Binary Tree from Inorder and Postorder Traversal
Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume that ...
- 【LeetCode】106. Construct Binary Tree from Inorder and Postorder Traversal
Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder traversal of ...
- [LeetCode-21]Construct Binary Tree from Preorder and Inorder Traversal
Given preorder and inorder traversal of a tree, construct the binary tree. Note: You may assume that ...
- leetcode题解:Construct Binary Tree from Preorder and Inorder Traversal (根据前序和中序遍历构造二叉树)
题目: Given preorder and inorder traversal of a tree, construct the binary tree. Note:You may assume t ...
- leetcode题解:Construct Binary Tree from Inorder and Postorder Traversal(根据中序和后序遍历构造二叉树)
题目: Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume ...
- [LeetCode] Construct Binary Tree from Inorder and Postorder Traversal 由中序和后序遍历建立二叉树
Given inorder and postorder traversal of a tree, construct the binary tree. Note: You may assume tha ...
- 【LeetCode】105 & 106. Construct Binary Tree from Inorder and Postorder Traversal
题目: Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume ...
随机推荐
- postfix配置&使用
myorigin = $mydomain #以“user@example.com”(而不是“user@hostname.example.com”)发送邮件, #这样就没有理由将邮件发送到“user@h ...
- webRTC中音频相关的netEQ(四):控制命令决策
上篇(webRTC中音频相关的netEQ(三):存取包和延时计算)讲了语音包的存取以及网络延时和抖动缓冲延时的计算,MCU也收到了DSP模块发来的反馈报告.本文讲MCU模块如何根据网络延时.抖动缓冲延 ...
- lucene搜索之高级查询
使用Query子类查询 MatchAllDocsQuery TermQuery NumericRangeQuery BooleanQuery 使用QueryParser QueryParser Mul ...
- 浅谈角色换装功能--Unity简单例子实现
在前置篇中,基本上梳理了一下换装功能背后涉及到的美术工作流.但程序员嘛,功能终归是要落到代码上的.本文中会结合Unity提供的API及之前提到的内容来实现一个简单的换装功能.效果如下: (图1:最终效 ...
- 如何避免在IE内核时,按BackSpace时进行网页会进行回退
//解决在IE浏览器中input被设置成readonly时,点击Backspace时会出现网页回退 document.onkeydown = check; function check(e) { va ...
- Koa,React和socket.io
安装 socket.io/socket.io-client 基本用法 首先koa和socket.io代码片段 const server = require('http'). const server ...
- 去掉点击a标签时产生的虚线框
1.直接给a 标签添加属性:onfocus="this.blur()" 即可 For Example: <a onfocus="this.blur()" ...
- 入门Spring ioc
简单的来记录一下自己的SSM框架入门--------IOC篇段 ioc(控制反转 -将对象的创建的权利从类型本身来创建,来交给spring工厂来创建)的配置. <bean>:是可以指spr ...
- 自定义Windows右击菜单调用Winform程序
U9_Git中ignore文件处理 背景 U9代码中有许多自动生成的文件,不需要上传Git必须BE Entity中的.target文件 .bak 文件 Enum.cs结尾的文件,还有许多 extand ...
- 修改 Vultr 登录密码
Debian,Ubuntu 访问控制台,打开在线 Console,点击右上角的 “Send CtrlAltDel”,按 ESC 键启动 GRUB boot prompt. 按 e 编辑第一启动项.按 ...