用贝叶斯定理解决三门问题并用Python进行模拟(Bayes' Rule Monty Hall Problem Simulation Python)
三门问题(Monty Hall problem)也称为蒙提霍尔问题或蒙提霍尔悖论,出自美国的电视游戏节目《Let’s Make a Deal》。问题名字来自该节目的主持人蒙提·霍尔(Monty Hall)。
这个游戏的玩法是:参赛者会看见三扇关闭的门,其中一扇门后面有一辆汽车,选中后面有车的那扇门就可以赢得该汽车,而另外两扇门后面则各藏有一只山羊。当参赛者选定了一扇门,但未去开启它的时候,节目主持人会开启剩下两扇门中的一扇,露出其中一只山羊。主持人其后会问参赛者要不要更换其初始的选择,选另一扇仍然关上的门。
那么问题来了,参赛者到底要不要更换其初始的选择呢?
解决这个问题需要用到贝叶斯定理:
让我们选一个特定的例子来看看:假设三扇门分别为Door A,Door B,Door C,并且参赛者初始选定了Door A,然后主持人展示了Door B。那么参赛者是坚持选择Door A还是更换成Door C呢?这就要根据Door A和Door C哪个门后汽车出现的概率较大决定了。
也就是说,我们需要解决P(Door A=car|Door A is selected, Door B is revealed)和P(Door C=car|Door A is selected, Door B is revealed)哪个大的问题。


首先,每个门后有车的概率都是1/3:
其次,如果Door A门后有汽车,那么Door A被选择的几率是1/3,假设初始选择了Door A,那么Door B被主持人打开的几率是1/2:
再次,普通情况下,Door A被选择的几率是1/3,Door B被主持人打开的几率是1/2(因为已经有一扇门被选择了,选择的门不能被打开):
同理,如果Door C门后有汽车,那么Door A被选择的几率是1/3,假设初始选择了Door A,那么Door B被主持人打开的几率是1:
因此,我们可以看到,P(Door C=car|Door A is selected, Door B is revealed)是P(Door A=car|Door A is selected, Door B is revealed)的两倍。也就是说,更换初始的选择将会使我们的获胜几率提高2倍!
可以用probability tree来帮助理解一下:

如果对上面的计算公式还有疑问,那么让我们用计算机来模拟一下:
from random import randint
from random import choice N = 1000 def simulate(N):
m=0 #设置不更换初始选择赢得汽车的次数
n=0 #设置更换初始选择赢得汽车的次数
for i in range(N): #模拟1000次游戏
win=randint(1,3) #设置藏有汽车的门,在1-3之间随机选出
bet1=randint(1,3) #设置初始选择的门,在1-3之间随机选出
remain=[i for i in range(1,4) if i!=win and i!=bet1] #剩余可选的门(除去初始选择的门和藏有汽车的门)
monty_reveal=choice(remain) #monty会在剩余可选的门中选择一扇门打开
bet2=6-bet1-monty_reveal #bet2表示更换初始选择(用6减是因为三扇门加起来等于6)
if bet1==win: #如果初始选择和藏有汽车的门吻合,那么初始选择的获胜次数+1
m+=1
if bet2==win: ##如果更换初始选择的bet2和藏有汽车的门吻合,那么bet2的获胜次数+1
n+=1
return n/m print(simulate(N))
2.0211480362537766
最后的结果: 更换初始选择获胜的次数差不多是不更换初始选择获胜次数的两倍。
三门问题是有些反直觉的,我们可以这样来理解:当参赛者选择Door A时,他的获胜概率是1/3,当主持人展示了Door B门后没有汽车以后,这个信息并没有给参赛者的初始选择带来任何有用的信息 ,选择Door A获胜的概率仍然是1/3,但是鉴于选择Door B获胜的概率降为了0,因此选择Door C获胜的概率变为1-1/3,也就是2/3。
参考:https://classroom.udacity.com/courses/st101/lessons/48744119/concepts/484806120923
用贝叶斯定理解决三门问题并用Python进行模拟(Bayes' Rule Monty Hall Problem Simulation Python)的更多相关文章
- 羊和汽车问题(或s三门问题(Monty Hall problem)亦称为蒙提霍尔问题)
三门问题(Monty Hall problem)亦称为蒙提霍尔问题.蒙特霍问题或蒙提霍尔悖论,大致出自美国的电视游戏节目Let's Make a Deal.问题名字来自该节目的主持人蒙提·霍尔(Mon ...
- Monty Hall Problem (三门问题)
最近有点忙,没怎么写程序...今天突然想起以前看到过的一个问题-三门问题,十分想用程序来模拟一下,于是实在忍不住了就模拟了这个游戏的实验,通过写程序更加加深了我对这个问题的理解,期间也查找了各种相关资 ...
- Monty 大厅问题(Monty Hall Problem)也称作三门问题,出自美国大型游戏节目 Let's Make a Deal。
Monty 大厅的问题陈述十分简单,但是它的答案看上去却是有悖常理.该问题不仅引起过很多争议,也经常出现在各种考试题中. Monty 大厅的游戏规则是这样的,如果你来参加这个节目,那么 (1)Mont ...
- Monty Hall 问题与贝叶斯定理的理解
三门问题(Monty Hall problem),是一个源自博弈论的数学游戏问题,大致出自美国的电视游戏节目Let's Make a Deal.问题的名字来自该节目的主持人蒙提·霍尔(Monty H ...
- Python科学计算(一)环境简介——Anaconda Python
Anaconda Python 是 Python 科学技术包的合集,功能和 Python(x,y) 类似.它是新起之秀,已更新多次了.包管理使用 conda,GUI基于 PySide,所有的包基本上都 ...
- 【Python五篇慢慢弹】快速上手学python
快速上手学python 作者:白宁超 2016年10月4日19:59:39 摘要:python语言俨然不算新技术,七八年前甚至更早已有很多人研习,只是没有现在流行罢了.之所以当下如此盛行,我想肯定是多 ...
- 【Python千问 2】Python核心编程(第二版)-- 欢迎来到Python世界
1.1 什么是Python 继承了传统编译语言的强大性和通用性,同时也借鉴了简单脚本和解释语言的易用性. 1.2 起源 来源于某个项目,那些程序员利用手边现有的工具辛苦工作着,他们设想并开发了更好的解 ...
- 用python实现模拟登录人人网
用python实现模拟登录人人网 字数4068 阅读1762 评论19 喜欢46 我决定从头说起.懂的人可以快速略过前面理论看最后几张图. web基础知识 从OSI参考模型(从低到高:物理层,数据链路 ...
- Python Web-第三周-Networks and Sockets(Using Python to Access Web Data)
1.Networked Programs 1.Internet 我们现在学习Internet部分,即平时我们浏览器做的事情,之后再学习客服端这部分 2.TCP 传输控制协议 3.Socket HTTP ...
随机推荐
- eclipes个人配置
设置字体:https://jingyan.baidu.com/article/f96699bb9442f3894e3c1b15.html general->appearance->colo ...
- PS提亮户外儿童照
(@摄影师延延)作品 调整完的图. 原图. 再看原图.好吧,这张照片明显欠曝了,蘑菇酱的小脸黑黑的.但是构图啊蘑菇酱的神情啊都不错捏.好在蘑菇妈是用raw格式拍,即刻Lightroom调整无压力. 1 ...
- 【学习总结】GirlsInAI ML-diary day-16-pip install XX
[学习总结]GirlsInAI ML-diary 总 原博github链接-day16 Pip pip是python 著名的包管理工具,在python开发过程必不可少. 本节带大家了解用pip实现的p ...
- 【转】实现Nginx代理WSS协议
https://blog.csdn.net/chopin407/article/details/52937645 后来看到了官网的教程(http://nginx.org/en/docs/http/we ...
- mysql问题汇总——持续更新
1.this is incompatible with sql_mode=only_full_group_by set @@sql_mode='STRICT_TRANS_TABLES,NO_ZERO_ ...
- jenkins 插件介绍
1.jenkins 利用maven编译,打包,所需插件:Maven Integration: Maven集成插件这个插件提供了Jenkins和Maven的深度集成,无论是好还是坏:项目之间的自动触发取 ...
- ipython安装( jupyter)
生产环境:win10 64位 pip的版本不是最新的,输入命令 python -m pip install --upgrade pip 更新我们的pip,pip不是最新的也会导致安装不了ipython ...
- babel (三) babel polly-fill
Babel includes a polyfill that includes a custom regenerator runtime and core-js. This will emulate ...
- Velocity ${} 和$!{}、!${}区别
前言 在使用Velocity时经常会看到三种使用变量的情况 情况一:${name} 情况二:$!{name} 情况三:!${name} 那么三者之间到底有什么区别呢?莫慌!!!哈哈 情况一:${nam ...
- gulp项目和webpack项目在浏览器中查看的方式
在存在.git的目录下,按住shift+左键,打开命令行或者使用git Bash Gulp: 输入gulp dev 本地起一个服务器,在项目中找到gulp.js,然后找本地服务器,找到host和por ...