原文链接http://blog.csdn.net/icurious/article/details/51240114

最小函数依赖集
一、等价和覆盖
  定义:关系模式R<U,F>上的两个依赖集F和G,如果F+=G+,则称F和G是等价的,记做F≡G。若F≡G,则称G是F的一个覆盖,反之亦然。两个等价的函数依赖集在表达能力上是完全相同的。
  
二、最小函数依赖集
  定义:如果函数依赖集F满足下列条件,则称F为最小函数依赖集或最小覆盖。
  ① F中的任何一个函数依赖的右部仅含有一个属性;
  ② F中不存在这样一个函数依赖X→A,使得F与F-{X→A}等价;
  ③ F中不存在这样一个函数依赖X→A,X有真子集Z使得F-{X→A}∪{Z→A}与F等价。
  算法:计算最小函数依赖集。
  输入 一个函数依赖集
  输出 F的一个等价的最小函数依赖集G
  步骤:① 用分解的法则,使F中的任何一个函数依赖的右部仅含有一个属性;
     ② 去掉多余的函数依赖:从第一个函数依赖X→Y开始将其从F中去掉,然后在剩下的函数依赖中求X的闭包X+,看X+是否包含Y,若是,则去掉X→Y;否则不能去掉,依次做下去。直到找不到冗余的函数依赖;
     ③去掉各依赖左部多余的属性。一个一个地检查函数依赖左部非单个属性的依赖。例如XY→A,若要判Y为多余的,则以X→A代替XY→A是否等价?若A 
(X)+,则Y是多余属性,可以去掉。
  举例:已知关系模式R<U,F>,U={A,B,C,D,E,G},F={AB→C,D→EG,C→A,BE→C,BC→D,CG→BD,ACD→B,CE→AG},求F的最小函数依赖集。
  
解1:利用算法求解,使得其满足三个条件
  
① 利用分解规则,将所有的函数依赖变成右边都是单个属性的函数依赖,得F为:F={AB→C,D→E,D→G,C→A,BE→C,BC→D,CG→B,CG→D,ACD→B,CE→A,CE→G}
   
② 去掉F中多余的函数依赖
  
A.设AB→C为冗余的函数依赖,则去掉AB→C,得:F1={D→E,D→G,C→A,BE→C,BC→D,CG→B,CG→D,ACD→B,CE→A,CE→G}
  计算(AB)F1+:设X(0)=AB
  计算X(1):扫描F1中各个函数依赖,找到左部为AB或AB子集的函数依赖,因为找不到这样的函数依赖。故有X(1)=X(0)=AB,算法终止。
  (AB)F1+= AB不包含C,故AB→C不是冗余的函数依赖,不能从F1中去掉。
  
B.设CG→B为冗余的函数依赖,则去掉CG→B,得:F2={AB→C,D→E,D→G,C→A,BE→C,BC→D,CG→D,ACD→B,CE→A,CE→G}
  计算(CG)F2+:设X(0)=CG
  计算X(1):扫描F2中的各个函数依赖,找到左部为CG或CG子集的函数依赖,得到一个C→A函数依赖。故有X(1)=X(0)∪A=CGA=ACG。
  计算X(2):扫描F2中的各个函数依赖,找到左部为ACG或ACG子集的函数依赖,得到一个CG→D函数依赖。故有X(2)=X(1)∪D=ACDG。
  计算X(3):扫描F2中的各个函数依赖,找到左部为ACDG或ACDG子集的函数依赖,得到两个ACD→B和D→E函数依赖。故有X(3)=X(2)∪BE=ABCDEG,因为X(3)=U,算法终止。
  (CG)F2+=ABCDEG包含B,故CG→B是冗余的函数依赖,从F2中去掉。
  
C.设CG→D为冗余的函数依赖,则去掉CG→D,得:F3={AB→C,D→E,D→G,C→A,BE→C,BC→D,ACD→B,CE→A,CE→G}
  计算(CG)F3+:设X(0)=CG
  计算X(1):扫描F3中的各个函数依赖,找到左部为CG或CG子集的函数依赖,得到一个C→A函数依赖。故有X(1)=X(0)∪A=CGA=ACG。
  计算X(2):扫描F3中的各个函数依赖,找到左部为ACG或ACG子集的函数依赖,因为找不到这样的函数依赖。故有X(2)=X(1),算法终止。(CG)F3+=ACG。
  (CG)F3+=ACG不包含D,故CG→D不是冗余的函数依赖,不能从F3中去掉。
  
D.设CE→A为冗余的函数依赖,则去掉CE→A,得:F4={AB→C,D→E,D→G,C→A,BE→C,BC→D,CG→D,ACD→B,CE→G}
  计算(CG)F4+:设X(0)=CE
  计算X(1):扫描F4中的各个函数依赖,找到左部为CE或CE子集的函数依赖,得到一个C→A函数依赖。故有X(1)=X(0)∪A=CEA=ACE。
  计算X(2):扫描F4中的各个函数依赖,找到左部为ACE或ACE子集的函数依赖,得到一个CE→G函数依赖。故有X(2)=X(1)∪G=ACEG。
  计算X(3):扫描F4中的各个函数依赖,找到左部为ACEG或ACEG子集的函数依赖,得到一个CG→D函数依赖。故有X(3)=X(2)∪D=ACDEG。
  计算X(4):扫描F4中的各个函数依赖,找到左部为ACDEG或ACDEG子集的函数依赖,得到一个ACD→B函数依赖。故有X(4)=X(3)∪B=ABCDEG。因为X(4)=U,算法终止。
  (CE)F4+=ABCDEG包含A,故CE→A是冗余的函数依赖,从F4中去掉。
  
③ 去掉F4中各函数依赖左边多余的属性(只检查左部不是单个属性的函数依赖)由于C→A,函数依赖ACD→B中的属性A是多余的,去掉A得CD→B。
  故最小函数依赖集为:F={AB→C,D→E,D→G,C→A,BE→C,BC→D,CG→D,CD→B,CE→G}
 
  
解2:利用Armstrong公理系统的推理规则求解
  ① 假设CG→B为冗余的函数依赖,那么,从F中去掉它后能根据Armstrong公理系统的推理规则导出。
  因为CG→D (已知)
  所以CGA→AD,CGA→ACD (增广律)
  因为ACD→B (已知)
  所以CGA→B (传递律)
  因为C→A (已知)
  所以CG→B (伪传递律)
  故CG→B是冗余的。
  ② 同理可证:CE→A是多余的。
  ③ 又因C→A,可知函数依赖ACD→B中的属性A是多余的,去掉A得CD→B。

  故最小函数依赖集为:F={AB→C,D→E,D→G,C→A,BE→C,BC→D,CG→D,CD→B,CE→G}

<转载>关系规范化之求最小函数依赖集(最小覆盖)的更多相关文章

  1. 数据库求闭包,求最小函数依赖集,求候选码,判断模式分解是否为无损连接,3NF,BCNF

    1.说白话一点:闭包就是由一个属性直接或间接推导出的所有属性的集合. 例(1):   设有关系模式R(U,F),其中U={A,B,C,D,E,I},F={A→D,AB→E,BI→E,CD→I,E→C} ...

  2. cell_phone_network(树形dp求最小支配集)

    Cell Phone Network Farmer John has decided to give each of his cows a cell phone in hopes to encoura ...

  3. ACM/ICPC 之 机器调度-匈牙利算法解最小点覆盖集(DFS)(POJ1325)

    //匈牙利算法-DFS //求最小点覆盖集 == 求最大匹配 //Time:0Ms Memory:208K #include<iostream> #include<cstring&g ...

  4. POJ 3398 Perfect Service --最小支配集

    题目链接:http://poj.org/problem?id=3398 这题可以用两种上述讲的两种算法解:http://www.cnblogs.com/whatbeg/p/3776612.html 第 ...

  5. POJ3659 Cell Phone Network(树上最小支配集:树型DP)

    题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. ...

  6. 求解任意图的最小支配集(Minimun Dominating Set)

    给定一个无向图G =(V,E),其中V表示图中顶点集合,E表示边的集合.G的最小控制顶点集合为V的一个子集S∈V:假设集合R表示V排除集合S后剩余顶点集合,即R∩S=∅,R∪S=V:则最小控制顶点集合 ...

  7. 求树的最大独立集,最小点覆盖,最小支配集 贪心and树形dp

    目录 求树的最大独立集,最小点覆盖,最小支配集 三个定义 贪心解法 树形DP解法 (有任何问题欢迎留言或私聊&&欢迎交流讨论哦 求树的最大独立集,最小点覆盖,最小支配集 三个定义 最大 ...

  8. 树形DP求树的最小支配集,最小点覆盖,最大独立集

    一:最小支配集 考虑最小支配集,每个点有两种状态,即属于支配集合或者不属于支配集合,其中不属于支配集合时此点还需要被覆盖,被覆盖也有两种状态,即被子节点覆盖或者被父节点覆盖.总结起来就是三种状态,现对 ...

  9. sw算法求最小割学习

    http://  blog.sina.com.cn/s/blog_700906660100v7vb.html 转载:http://www.cnblogs.com/ylfdrib/archive/201 ...

随机推荐

  1. Java调用WebService就是这么简单

    https://cloud.tencent.com/developer/article/1080966

  2. 使用select的str_cli函数的实现

    void str_cli(FILE *fp, int sockfd) { int maxfdp1; fd_set rset; char sendline[MAXLINE], recvline[MAXL ...

  3. Tomcat连接池配置与实现/JNDI

    方法一: 在Tomcat的conf/context.xml中配置在Tomcat\apache-tomcat-6.0.33\conf目录下的context.xml文件中配置默认值如下: <?xml ...

  4. php 随机生成数字字母组合

    直接上代码: function getRandomString($len, $chars=null) { if (is_null($chars)) { $chars = "abcdefghi ...

  5. nginx + iis 使用介绍

    1.下载 nginx 2.配置nginx 文件 1)配置该目录下E:\nginx\nginx-1.9.3\conf: #user nobody; worker_processes ; #error_l ...

  6. jdbc 日期处理问题

    1.从结果集中取得日期部分 resultSet.getDate();  --2013-01-07 2.从结果集中取得时间部分 resultSet.getTime()   --22:08:09 3.从结 ...

  7. cpp 模版函数

    template <typename T> void fillingTable(T ***table, int row, int column, int defaultValue = ST ...

  8. lua 的语法糖

    tb = {} function tb:fun1() self ---tb end function tb.fun2() self ---->无 end tb:fun1() tb.fun2() ...

  9. linux 僵屍进程

    参考链接 :  http://soft.chinabyte.com/os/5/12172005.shtml

  10. mysql案例~mysql主从复制延迟概总

    浅谈mysql主从复制延迟 1 概念解读 需要知道以下几点 1 mysql的主从同步上是异步复制,从库是串行化执行 2 mysql 5.7的并行复制能加速从库重做的速度,进一步缓解 主从同步的延迟问题 ...