引言

上一篇文章了解了kafka的重要组件zookeeper,用来保存broker、consumer等相关信息,做到平滑扩展。这篇文章就实际操作部署下kafka,用几个简单的例子加深对kafka的理解,学会基本使用kafka。

环境搭建

我将会在本地部署一个三台机器的zookeeper集群,和一个2台机器的kafka集群。

zookeeper集群

zookeeper的搭建可以看我的上一篇文章分布式系统中zookeeper实现配置管理+集群管理,按照步骤,一步步可以很容易的搭建3太服务器的zookeeper集群。跟之前一样,我还是在本地的3个端口搭建了3台服务器,地址如下所示:

192.168.0.105:2181
192.168.0.105:2182
192.168.0.105:2183

这三台服务器一会儿会在kafka配置中用到。

kafka集群

第一步. 下载kafka

到kafka官网下载apache kafka,解压到/path/to/kafka目录。

第二步. 修改配置文件

复制/path/to/kafka/config/server.properties,到/path/to/kafka/config/server-1.properties/path/to/kafka/config/server-2.properties

配置文件中修改的差异内容如下所示:

server-1.properties

broker.id=1
listeners=PLAINTEXT://:9093
log.dirs=/tmp/kafka-logs-1
zookeeper.connect=192.168.0.105:2181,192.168.0.105:2182,192.168.0.105:2183

server-2.properties

broker.id=2
listeners=PLAINTEXT://:9094
log.dirs=/tmp/kafka-logs-2
zookeeper.connect=192.168.0.105:2181,192.168.0.105:2182,192.168.0.105:2183

其中broker.id是broker的唯一标示,集群中的broker标识必须唯一。

listeners是broker监听的地址和端口,advertised.listeners用于和producer、consumer交互,后者未配置会默认使用前者,listeners的完整格式是listeners = listener_name://host_name:port,其中PLAINTEXT是协议,还有一种是SSL,具体还没太搞明白(TODO)。

log.dirs是日志数据的存放目录,也就是producer产生的数据存放的目录。

zookeeper.connect配置是zookeeper的集群,broker启动之后将信息注册到zookeeper集群中。

第三步. 启动服务器

cd /path/to/kafka
bin/kafka-server-start.sh -daemon config/server-1.properties
bin/kafka-server-start.sh -daemon config/server-2.properties

使用jps命令可以看见2个kafka进程,证明启动成功了。

第四步. 创建topic

创建topic一般使用kafka自带的脚本创建:

bin/kafka-topics.sh --create --zookeeper 192.168.0.105:2181,192.168.0.105:2182,192.168.0.105:2183 --replication-factor 2 --partitions 10 --topic user-event

其中--zookeeper就是后面就是我们上面配置的zookeeper集群,--replication-factor代表每个分区在集群中复制的份数,后面的值要小于kafka集群中服务器数量,--partitions表示创建主题的分区数量,一般分区越大,性能越好,--topic后边儿就是创建主题的名字,运行成功之后会看到Created topic "user-event".字样,表示创建成功,会在kafka配置的日志目录下创建主题信息,比如下面的:

ll /tmp/kafka-logs-1

drwxr-xr-x  7 ritoyan  wheel  224  6  3 21:21 clock-tick-0
drwxr-xr-x 7 ritoyan wheel 224 6 3 21:21 clock-tick-2
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-0
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-1
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-2
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-3
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-4
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-5
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-6
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-7
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-8
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-9

ll /tmp/kafka-logs-2

drwxr-xr-x  7 ritoyan  wheel  224  6  3 21:21 clock-tick-1
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-0
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-1
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-2
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-3
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-4
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-5
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-6
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-7
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-8
drwxr-xr-x 6 ritoyan wheel 192 6 3 21:26 user-event-9

可以看到两个broker中都创建了主题user-event的10个分区。可能也有人要问了,clock-tick这个主题怎么在broker1中有2个分区,broker2中有1个分区,这个是我之前创建的一个分区,用了下面的命令bin/kafka-topics.sh --create --zookeeper 192.168.0.105:2181,192.168.0.105:2182,192.168.0.105:2183 --replication-factor 1 --partitions 3 --topic clock-tick,只有一份日志记录,3个分区,分区会均匀的分布在所有broker上。

至此kafka环境配置好了,西面我们看看如何使用。

基本使用

安装kafka-python,用来操作kafka,pip3 install kafka-python,这里是他的文档,文档写的不错,简洁易懂kafka-python

producer 向broker发送消息

bootstrap_servers是kafka集群地址信息,下面事项主题user-event发送一条消息,send发送消息是异步的,会马上返回,因此我们要通过阻塞的方式等待消息发送成功(或者flush()也可以,flush会阻塞知道所有log都发送成功),否则消息可能会发送失败,但也不会有提示,关于上面这个可以通过删除send之后的语句试试,会发现broker不会收到消息,然后在send后加上time.sleep(10)之后,会看到broker收到消息。

from kafka import KafkaProducer
from kafka.errors import KafkaError producer = KafkaProducer(
bootstrap_servers=[
"localhost:9093",
"localhost:9094"
]
) future = producer.send("user-event", b'I am rito yan')
try:
record_metadata = future.get(timeout=10)
print_r(record_metadata)
except KafkaError as e:
print(e)

阻塞等待发送成功之后,会看到返回插入记录的信息:

RecordMetadata(topic='user-event', partition=7, topic_partition=TopicPartition(topic='user-event', partition=7), offset=1, timestamp=1528034253757, checksum=None, serialized_key_size=-1, serialized_value_size=13),里面包括了插入log的主题、分区等信息。

格式化发送的信息

创建producer的时候可以通过value_serializer指定格式化函数,比如我们数据是个dict,可以指定格式化函数,将dict转化为byte:

import json

producer = KafkaProducer(
bootstrap_servers=[
"localhost:9093",
"localhost:9094"
],
value_serializer=lambda m: json.dumps(m).encode('ascii')
) future = producer.send("user-event", {
"name": "燕睿涛",
"age": 26,
"friends": [
"ritoyan",
"luluyrt"
]
})

这样就可以将格式化之后的信息发送给broker,不用每次发送的时候都自己格式化,真是不要太好用。

consumer 消费数据

创建一个consumer,其中group_id是分组,broker中的每一个数据只能被consumer组中的一个consumer消费。

from kafka import KafkaConsumer

consumer = KafkaConsumer(
"user-event",
group_id = "user-event-test",
bootstrap_servers = [
"localhost:9093",
"localhost:9094"
]
)
for message in consumer:
print("%s:%d:%d: key=%s value=%s" % (message.topic, message.partition,
message.offset, message.key,
message.value))

启动之后,进程会一直阻塞在哪里,等broker中有消息的时候就会去消费,启动多个进程,只要保证group_id一致,就可以保证消息只被组内的一个consumer消费,上面的程序会输出:

user-event:8:2: key=None value=b'{"name": "\\u71d5\\u777f\\u6d9b", "age": 26, "friends": ["ritoyan", "luluyrt"]}'

同样,进入的时候有value_serializer,出来的时候对应的也有value_deserializer,消费者可以配置value_deserializer来格式化内容,跟producer对应起来

consumer = KafkaConsumer(
"user-event",
group_id = "user-event-test",
bootstrap_servers = [
"localhost:9093",
"localhost:9094"
],
value_deserializer=lambda m: json.loads(m.decode('ascii'))
)

输出内容user-event:8:3: key=None value={'name': '燕睿涛', 'age': 26, 'friends': ['ritoyan', 'luluyrt']}

kafka其他命令

查看分组

我们的consumer可能有很多分组,可以通过西面的命令查看分组信息:

cd /path/to/kafka
bin/kafka-consumer-groups.sh --bootstrap-server localhost:9093,localhost:9094 --list

可以看到我使用中的分组有4个,分别如下所示

clock-tick-test3
user-event-test
clock-tick-test2
clock-tick-test

查看特定分组信息

可以通过bin/kafka-consumer-groups.sh --bootstrap-server 127.0.0.1:9093 --group user-event-test --describe,查看分组user-event-test的信息,可以看到西面的信息,包含消费的主题、分区信息,以及consumer在分区中的offset和分区的总offset。(为了格式化显示,删了部分列的部分字母)

TOPIC		PARTITION	CURRENT-OFFSET	LOG-END-OFFSET	LAG	CONSUMER-ID	HOST	CLIENT-ID
user-event 3 0 0 0 kafka-python-154b2 /127.0.0.1 kafka-python
user-event 0 0 0 0 kafka-python-154b2 /127.0.0.1 kafka-python
user-event 1 1 1 0 kafka-python-154b2 /127.0.0.1 kafka-python
user-event 2 1 1 0 kafka-python-154b2 /127.0.0.1 kafka-python
user-event 4 0 0 0 kafka-python-154b2 /127.0.0.1 kafka-python
user-event 9 1 1 0 kafka-python-78517 /127.0.0.1 kafka-python
user-event 8 4 4 0 kafka-python-78517 /127.0.0.1 kafka-python
user-event 7 2 2 0 kafka-python-78517 /127.0.0.1 kafka-python
user-event 6 1 1 0 kafka-python-78517 /127.0.0.1 kafka-python
user-event 5 0 0 0 kafka-python-78517 /127.0.0.1 kafka-python

结语

至此,kafka的基本使用算是掌握了,以后要是有机会在项目中实践就好了,在实际工程中的各种问题可以更加深刻的理解其中的原理。

kafka环境搭建和使用(python API)的更多相关文章

  1. kafka环境搭建及librdkafka测试

    kafka环境搭建及librdkafka测试 (2016-04-05 10:18:25)   一.kafka环境搭建(转自http://kafka.apache.org/documentation.h ...

  2. windows下golang实现Kfaka消息发送及kafka环境搭建

    kafka环境搭建: 一.安装配置java-jdk (1)kafka需要java环境,安装java-jdk,下载地址:https://www.oracle.com/technetwork/java/j ...

  3. kafka环境搭建

    kafka环境搭建 for mac 对应qq群号:616961231 在之前的文章中, 有学习能力和兴趣爱好的同学,自己动手维护测试环境,丰衣足食是最好的办法,今天我们来讲讲kafka在mac上的安装 ...

  4. Python+selenium测试环境成功搭建,简单控制浏览器(firefox)接下来,继续学习其他浏览器上的测试环境搭建;学习Python语言,利用Python语言来写测试用例。加油!!!

    Python+selenium测试环境成功搭建,简单控制浏览器(firefox)接下来,继续学习其他浏览器上的测试环境搭建:学习Python语言,利用Python语言来写测试用例.加油!!!

  5. 【入门教程】kafka环境搭建以及基础教程

    问题导读 1.Kafka独特设计在什么地方?2.Kafka如何搭建及创建topic.发送消息.消费消息?3.如何书写Kafka程序?4.数据传输的事务定义有哪三种?5.Kafka判断一个节点是否活着有 ...

  6. windows kafka 环境搭建踩坑记

    版本介绍(64位): Windows 10 JDK1.8.0_171 zookeeper-3.4.8/ kafka_2.11-0.10.0.1.tgz 点击链接进行下载 1. JDK安装和环境搭建 自 ...

  7. Kafka - 环境搭建

    一.概述 Kafka(官网地址)专为分布式高吞吐量系统而设计. Kafka往往工作得很好,作为一个更传统的消息代理的替代品. 与其他消息传递系统相比,Kafka具有更好的吞吐量,内置分区,复制和固有的 ...

  8. kafka环境搭建2-broker集群+zookeeper集群(转)

    原文地址:http://www.jianshu.com/p/dc4770fc34b6 zookeeper集群搭建 kafka是通过zookeeper来管理集群.kafka软件包内虽然包括了一个简版的z ...

  9. windows10下Kafka环境搭建

    内容小白,包含JDK+Zookeeper+Kafka三部分.JDK:1)   安装包:Java SE Development Kit 9.0.1      下载地址:http://www.oracle ...

随机推荐

  1. 简单 PHP + MySQL 数据库动态网站制作 -- 摘抄

    在这篇文章中,我尽量用最浅显易懂的语言来说明使用 PHP, MySQL 制作一个动态网站的基本技术.阅读本文需要简单的 HTML 基础知识和(任一编程语言的)编程基础知识(例如变量.值.循环.语句块的 ...

  2. nginx的rewrite ,如何在flask项目中获取重写前的url

    1. 在flask配一个重写到哪的路由,假设是/rewite/,然后到nginx的配置文件写重写规则,我这里重写全部的请求,接着测试能否重写成功 1. 添加一个路由 配置重写规则 测试成功 2.接下来 ...

  3. win10系统磁盘占用率高的解决方法,占用100%的问题

    win10系统开机后明明什么都没做,磁盘占用率却只见飙升到了100%,出现这种情况是win10自带的服务导致的.下面的方法可以解决win10系统磁盘占用率高问题. 1.按下Win+R,然后输入serv ...

  4. shell编程—运算符(五)

    算术运算符 expr 是一款表达式计算工具,使用它能完成表达式的求值操作 加法:expr a+b 两个数相加使用的是反引号`而不是单引号‘’ 减法:expr a-b 乘法:expr a\*b 除法:e ...

  5. SQL Server基础之登陆触发器

    虽然同表级(DML)触发器和库级(DDL)触发器共顶着一个帽子,但登陆触发器与二者有本质区别.无论表级还是库级,都是用来进行数据管理的,而登陆触发器是纯粹的安全工具. 登陆触发器只响应LOGON事件, ...

  6. SpringBoot自定义属性配置以及@ConfigurationProperties注解与@Value注解区别

    我们可以在application.properties中配置自定义的属性值,为了获取这些值,我们可以使用spring提供的@value注解,还可以使用springboot提供的@Configurati ...

  7. mysql中的升序和降序以及一个字段升序和一个字段降序

    mySql中,升序为asc,降序为desc.例如: 升序:select   *  from  表名 order by  表中的字段 asc(mysql中默认是升序排列,可不写) 降序:select   ...

  8. (转)ElasticSearch教程——汇总篇

    https://blog.csdn.net/gwd1154978352/article/details/82781731 环境搭建篇 ElasticSearch教程——安装 ElasticSearch ...

  9. (转)Spring Boot (十三): Spring Boot 小技巧

    http://www.ityouknow.com/springboot/2017/06/22/spring-boot-tips.html 一些 Spring Boot 小技巧.小知识点 初始化数据 我 ...

  10. MySQL高级知识(五)——索引分析

    前言:前面已经学习了explain(执行计划)的相关知识,这里利用explain对索引进行优化分析. 0.准备 首先创建三张表:tb_emp(职工表).tb_dept(部门表)和tb_desc(描述表 ...