【BZOJ5332】[SDOI2018]旧试题(数论,三元环计数)
【BZOJ5332】[SDOI2018]旧试题(数论,三元环计数)
题面
题解
如果只有一个\(\sum\),那么我们可以枚举每个答案的出现次数。
首先约数个数这个东西很不爽,就搞一搞,变成\(\displaystyle \sum_{d|i}1\)
那么原式就可以写成:\(\displaystyle \sum_{i=1}^A\sum_{j=1}^B\sum_{k=1}^C\sum_{d=1}^Ad|ijk\)。
既然\(d|ijk\),意味着\(d\)可以分别拆成\(i\)的一个因子,\(j\)的一个因子,\(k\)的一个因子的乘积,那么我们接着写,改写成\(\displaystyle \sum_{i=1}^A\sum_{j=1}^B\sum_{k=1}^C\sum_{x|i}\sum_{y|j}\sum_{z|k}1\)的形式。然而这个样子是会算重的。考虑这里怎么处理。
\(\displaystyle d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x,y)=1]\)。
证明:
令\(i*j=\prod p_i^{a_i}\),令\(i=\prod p_i^{b_i}\),则\(j=\prod p_i^{a_i-b_i}\)。
令\(x=\prod p_i^{c_i},y=\prod p_i^{d_i}\),如果\(gcd(x,y)=1\),那么必定有\(c_i\)和\(d_i\)中有一个取值为\(0\),那么这个质因子的可以分配的方案数就是\((b_i+1)+(a_i-b_i+1)-1=a_i+1\)。
发现这个式子与唯一分解定理求解约数个数的式子一样,所以得证。
类似的可以证明\(\displaystyle d(ijk)=\sum_{x|i}\sum_{y|j}\sum_{z|k}[(x,y)=1][(y,z)=1][(z,x)=1]\)。
这样子我们就可以把式子写成:$$\displaystyle \sum_{i=1}A\sum_{j=1}B\sum_{k=1}^C\sum_{x|i}\sum_{y|j}\sum_{z|k}[(x,y)=1][(y,z)=1][(z,x)=1]$$
然后改变枚举顺序:$$\displaystyle \sum_{x=1}A\sum_{y=1}B\sum_{z=1}^C[(x,y)=1][(y,z)=1][(z,x)=1][\frac{A}{x}][\frac{B}{y}][\frac{C}{z}]$$
然后把\([(x,y)=1]\)变成\(\displaystyle \sum_{d|x,d|y}\mu(d)\)。
然后式子就变成了:
\]
然后转而枚举\(d1,d2,d3\):
\]
后面的东西,显然可以在调和级数的复杂度内预处理,并且当\(lcm>max(A,B,C)\)的时候的值就是\(0\)。
那么考虑枚举两个数,如果它们两个的\(lcm\le max\)的话就在他们之间连上一条边,这样子就得到了一张无向图,把自环处理掉,那么剩下的每一个三元环把他们对应到\(d1,d2,d3\)上面就是一组解。把自环丢掉的时候也丢掉了有两个数或者三个数相等的情况,所以还需要额外算一下。
然而直接枚举任意两个点是\(O(n^2)\)的。
我们考虑枚举两者的\(gcd\),然后再来枚举两个互质的数,以为\(\mu=0\)也是没有贡献的,所以\(\mu=0\)的数也不用考虑,这样子就可以减掉大量没有用的状态。
然后跑个三元环就好了。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define pb push_back
#define MAX 100100
#define MOD 1000000007
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
int pri[MAX],tot,mu[MAX];bool zs[MAX];
void Sieve()
{
mu[1]=1;
for(int i=2;i<MAX;++i)
{
if(!zs[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<MAX;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j]==0)break;
mu[i*pri[j]]=-mu[i];
}
}
}
int A,B,C,mx,dg[MAX],vis[MAX],book[MAX];
ll ans,fa[MAX],fb[MAX],fc[MAX];
vector<int> U,V,W;
vector<int> e[MAX],w[MAX];
int main()
{
Sieve();int T=read();
while(T--)
{
A=read();B=read();C=read();mx=max(A,max(B,C));ans=0;
for(int i=1;i<=A;++i)for(int j=i;j<=A;j+=i)fa[i]+=A/j;
for(int i=1;i<=B;++i)for(int j=i;j<=B;j+=i)fb[i]+=B/j;
for(int i=1;i<=C;++i)for(int j=i;j<=C;j+=i)fc[i]+=C/j;
for(int i=1;i<=A&&i<=B&&i<=C;++i)if(mu[i])ans+=mu[i]*fa[i]*fb[i]*fc[i];
for(int i=1;i<=mx;++i)
{
if(!mu[i])continue;
for(int j=1;i*j<=mx;++j)
{
if(!mu[i*j])continue;
for(int k=j+1;1ll*i*j*k<=mx;++k)
{
if(!mu[i*k])continue;
if(__gcd(j,k)>1)continue;
int x=i*j,y=i*k,l=i*j*k;
ans+=mu[y]*(fa[x]*fb[l]*fc[l]+fa[l]*fb[x]*fc[l]+fa[l]*fb[l]*fc[x]);
ans+=mu[x]*(fa[y]*fb[l]*fc[l]+fa[l]*fb[y]*fc[l]+fa[l]*fb[l]*fc[y]);
++dg[x];++dg[y];U.pb(x);V.pb(y);W.pb(l);
}
}
}
for(int i=0,l=U.size();i<l;++i)
{
int u=U[i],v=V[i];
if(dg[u]<dg[v]||(dg[u]==dg[v]&&u<v))e[v].pb(u),w[v].pb(W[i]);
else e[u].pb(v),w[u].pb(W[i]);
}
for(int i=1;i<=mx;++i)
{
for(int j=0,l=e[i].size();j<l;++j)vis[e[i][j]]=i,book[e[i][j]]=w[i][j];
for(int j=0,l=e[i].size();j<l;++j)
{
int u=e[i][j];
for(int k=0,lk=e[u].size();k<lk;++k)
{
int v=e[u][k];if(vis[v]!=i)continue;
int a=w[i][j],b=book[v],c=w[u][k];
ans+=mu[i]*mu[u]*mu[v]*(fa[a]*fb[b]*fc[c]+fa[a]*fb[c]*fc[b]+fa[b]*fb[a]*fc[c]+fa[b]*fb[c]*fc[a]+fa[c]*fb[a]*fc[b]+fa[c]*fb[b]*fc[a]);
}
}
}
printf("%lld\n",ans%MOD);
for(int i=1;i<=mx;++i)fa[i]=fb[i]=fc[i]=dg[i]=vis[i]=0;
for(int i=1;i<=mx;++i)e[i].clear(),w[i].clear();
U.clear();V.clear();W.clear();
}
}
【BZOJ5332】[SDOI2018]旧试题(数论,三元环计数)的更多相关文章
- loj#2565. 「SDOI2018」旧试题(反演 三元环计数)
题意 题目链接 Sol 神仙反演题.在洛谷上疯狂被卡常 Orz shadowice #include<bits/stdc++.h> #define Pair pair<int, in ...
- BZOJ5332: [Sdoi2018]旧试题(莫比乌斯反演)
时光匆匆,转眼间又是一年寒暑…… 这是小 Q 同学第二次参加省队选拔赛. 今年,小 Q 痛定思痛,不再冒险偷取试题,而是通过练习旧 试题提升个人实力.可是旧试题太多了,小 Q 没日没夜地做题,却看不到 ...
- Bzoj5332: [Sdoi2018]旧试题
国际惯例的题面首先我们进行一些相对显然的数学变化.解释一下第二行的那个变形,如果一个数是ijk的因数,那么它一定能被分解成三部分分别是i,j,k的因数.我们钦定一个质数只能在三部分的一个中出现.如果一 ...
- LOJ2565 SDOI2018 旧试题 莫比乌斯反演、三元环计数
传送门 这道题的思路似乎可以给很多同时枚举三个量的反演题目提供一个很好的启发-- 首先有结论:\(d(ijk) = \sum\limits_{x|i}\sum\limits_{y|j}\sum\lim ...
- [SDOI2018] 旧试题
推狮子的部分 \[ \sum_{i=1}^A\sum_{j=1}^B\sum_{k=1}^C\sigma(ijk) =\sum_{i=1}^A\sum_{j=1}^B\sum_{k=1}^C\sum_ ...
- P4619 [SDOI2018]旧试题
题目 P4619 [SDOI2018]旧试题 Ps:山东的题目可真(du)好(liu),思维+码量的神仙题 推式 求\(\sum_{i=1}^A\sum_{j=1}^B\sum_{k=1}^Cd(ij ...
- Codechef SUMCUBE Sum of Cubes 组合、三元环计数
传送门 好久没有做过图论题了-- 考虑\(k\)次方的组合意义,实际上,要求的所有方案中导出子图边数的\(k\)次方,等价于有顺序地选出其中\(k\)条边,计算它们在哪一些图中出现过,将所有方案计算出 ...
- loj#6076「2017 山东一轮集训 Day6」三元组 莫比乌斯反演 + 三元环计数
题目大意: 给定\(a, b, c\),求\(\sum \limits_{i = 1}^a \sum \limits_{j = 1}^b \sum \limits_{k = 1}^c [(i, j) ...
- BZOJ.5407.girls/CF985G. Team Players(三元环计数+容斥)
题面 传送门(bzoj) 传送门(CF) \(llx\)身边妹子成群,这天他需要从\(n\)个妹子中挑出\(3\)个出去浪,但是妹子之间会有冲突,表现为\(i,j\)之间连有一条边\((i,j)\), ...
随机推荐
- stark组件之展示数据(查)
1.编辑按钮构建完成 2.构造表头,删除,checkbox,links编辑 3.代码+总结 1.编辑按钮构建完成 1.必备知识预习 第一个会打印5. 第二个输出alex alex是person ...
- Python之random模块
random模块 产生随机数的模块 是Python的标准模块,直接导入即可 import random 1)随机取一个整数,使用.randint()方法: import random print(ra ...
- Java面试题详解二:java中的关键字
一,final1.被final修饰的类不可以被继承2.被final修饰的方法不可以被重写3.被final修饰的变量不可以被改变 重点就是第三句.被final修饰的变量不可以被改变,什么不可以被改变呢 ...
- 墨者学院——密码学加解密实训(Base64转义)
地址:https://www.mozhe.cn/bug/detail/SW5ObnVFa05vSHlmTi9pcWhRSjRqZz09bW96aGUmozhe 在靶场中找到内容 解密 访问直接得key
- 硬盘扩容9999T
win+r运行创建命令:subst H: d:\123说明:H指的是想要创建的盘符,d:\123是文件路径 删除命令subst H: d/说明 :H指的是已创建的盘符,/d指的是删除的意思 注意新盘符 ...
- css小demo
span{ color: #ccc; float: right; font-weight: bold; display: inline-block; border-right: solid 1px # ...
- java的编程习惯影响程序性能
在Java程序中,性能问题的大部分原因并不在于Java语言,而是在于程序本身. 养成良好的编程习惯非常重要,能够显著地提升程序性能. 尽量在合适的场合使用单例 使用单例可以减轻加载的负担,缩短加载的时 ...
- 【学亮开讲】Oracle内外连接查询20181119
--内连接查询 --需求:查询显示业主编号.业主名称.业主类型名称 select os.id 业主编号,os.name 业主名称,ot.name 业主类型名称 from t_owners os,t_o ...
- spring mvc常用注解总结
1.@RequestMapping@RequestMappingRequestMapping是一个用来处理请求地址映射的注解(将请求映射到对应的控制器方法中),可用于类或方法上.用于类上,表示类中的所 ...
- JavaScript lastIndexOf() 方法
<script type="text/javascript"> var str="0000.0000.0000.0000.0000.0000.0000.&qu ...