【hdu6185】Covering(骨牌覆盖)
2017ACM/ICPC广西邀请赛-重现赛1004Covering
题意
n*4的格子,用1*2和2*1的砖块覆盖。问方案数(mod 1e9+7)。(n不超过1e9)
题解
递推了个式子然后错位相减。
f[n] =f[n-1]+4f[n-2]+2f[n-3]+3f[n-4]+2f[n-5]+2f[n-6]+..+(x%2?2:3)f[n-x]
f[n-2]= f[n-3]+4f[n-4]+2f[n-5]+3f[n-6]+..+(x%2?2:3)f[n-x]
f[n] =f[n-1]+5f[n-2]+ f[n-3]-f[n-4]
再用矩阵快速幂。
另外,这题可以先用暴力的dfs或者状态压缩dp求得前几项,然后套BM板子得出递推式。
不过,官方题解的方法是状态压缩加矩阵快速幂优化:
只考虑一列的状态,0表示没有被覆盖,1表示被覆盖了,只可能有0000,1111,1001,0110,1100,0011。
dp[i][j]表示前i-1列覆盖满,第i列状态为j的方案数。考虑转移,然后a[i][j]==1就是状态i可以由状态j转移过来,那么就可以矩阵快速幂加速了。
--
51nod 上的骨牌覆盖 V2,类似。a数组可以dfs出来。
代码
typedef long long ll;
typedef vector<ll> VI;
typedef vector<VI> Mat;
const ll mod=1000000007;
Mat mul(Mat &a,Mat &b){
Mat c(SZ(a), VI(SZ(b[0])));
rep(i,0,SZ(a))rep(j,0,SZ(b[0]))rep(k,0,SZ(b))
c[i][j]=(c[i][j]+a[i][k]*b[k][j])%mod;
return c;
}
Mat qpow(Mat a,ll b){
Mat c(SZ(a), VI(SZ(a)));
rep(i,0,SZ(a))c[i][i]=1;
for(;b;b>>=1,a=mul(a,a))if(b&1)c=mul(c,a);
return c;
}
int main(){
Mat a(4,VI(4));
a[0]=VI{1,5,1,-1};
rep(i,0,3)a[i+1][i]=1;
ll n;
while(~scanf("%lld",&n)){
if(n==1)puts("1");
else if(n==2)puts("5");
else if(n==3)puts("11");
else if(n==4)puts("36");
else{
Mat c=qpow(a,n-4);
printf("%lld\n",((c[0][0]*36+c[0][1]*11+c[0][2]*5+c[0][3])%mod+mod)%mod);
}
}
return 0;
}
状态压缩
int main() {
Mat a(6,VI(6));
a[0]=VI{1,1,1,1,1,0};
a[1]=VI{1,0,0,0,0,0};
a[2]=VI{1,0,0,1,0,0};
a[3]=VI{1,0,1,0,0,0};
a[4]=VI{1,0,0,0,0,1};
a[5]=VI{0,0,0,0,1,0};
ll n;
while(~scanf("%lld",&n)){
printf("%lld\n",qpow(a,n)[0][0]);
}
return 0;
}
骨牌覆盖 V2
const int N=1<<5;
int n,m;
Mat a(N,VI(N));
void dfs(int c,int pre,int cur){
if(c>n)return;
if(c==n){
++a[pre][cur];
return;
}
dfs(c+1,pre<<1,cur<<1|1);//竖着放
dfs(c+1,pre<<1|1,cur<<1);//不能放
dfs(c+2,pre<<2,cur<<2);//横着放
}
int main() {
while(~scanf("%d%d",&m,&n)){
rep(i,0,SZ(a))rep(j,0,SZ(a[i]))a[i][j]=0;
dfs(0,0,0);
printf("%lld\n",qpow(a,m)[0][0]);
}
return 0;
}
【hdu6185】Covering(骨牌覆盖)的更多相关文章
- 随便玩玩系列之一:SPOJ-RNG+51nod 算法马拉松17F+51nod 1034 骨牌覆盖v3
先说说前面的SPOJ-RNG吧,题意就是给n个数,x1,x2,...,xn 每次可以生成[-x1,x1]范围的浮点数,把n次这种操作生成的数之和加起来,为s,求s在[A,B]内的概率 连续形的概率 假 ...
- hiho #1151 : 骨牌覆盖问题·二 (递推,数论)
#1151 : 骨牌覆盖问题·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3xN的骨牌问题? ...
- hiho #1143 : 骨牌覆盖问题·一 (运用快速幂矩阵)
#1143 : 骨牌覆盖问题·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题:我们有一个2xN的长条形棋盘,然 ...
- hiho42 : 骨牌覆盖问题·二
描述 上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3xN的骨牌问题?所以我们的题目是:对于3xN的棋盘,使用1x2的骨牌去覆盖一共有多少种不同的覆盖方法呢?首先我们可以肯定, ...
- hiho41 : 骨牌覆盖问题·一
原问题:骨牌覆盖问题 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题:我们有一个2xN的长条形棋盘,然后用1x2的 ...
- hihocoder第42周 3*N骨牌覆盖(状态dp+矩阵快速幂)
http://hihocoder.com/contest/hiho42/problem/1 给定一个n,问我们3*n的矩阵有多少种覆盖的方法 第41周做的骨牌覆盖是2*n的,状态转移方程是dp[i] ...
- 1007 正整数分组 1010 只包含因子2 3 5的数 1014 X^2 Mod P 1024 矩阵中不重复的元素 1031 骨牌覆盖
1007 正整数分组 将一堆正整数分为2组,要求2组的和相差最小. 例如:1 2 3 4 5,将1 2 4分为1组,3 5分为1组,两组和相差1,是所有方案中相差最少的. Input 第1行:一个 ...
- hihoCoder 1143 : 骨牌覆盖问题·一(递推,矩阵快速幂)
[题目链接]:click here~~ 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个2xN的长条形 ...
- hihoCoder #1143 : 骨牌覆盖问题·一
#1143 : 骨牌覆盖问题·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题:我们有一个2xN的长条形棋盘,然 ...
随机推荐
- 牛客练习赛 A题 筱玛的快乐
链接:https://ac.nowcoder.com/acm/contest/342/A来源:牛客网 筱玛的快乐 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K,其他语 ...
- MySQL中varchar与char的区别以及varchar(50)中的50代表的涵义
varchar与char的区别: 1).varchar与char的区别char是一种固定长度的类型,varchar则是一种可变长度的类型 尽可能的使用 varchar 代替 char ,因为首先变长 ...
- 软工网络15团队作业8——Beta阶段敏捷冲刺
Deadline: 2018-5-31 22:00PM,以博客提交至班级博客时间为准 根据以下要求: (1)在敏捷冲刺前发布一篇博客,作为beta版敏捷冲刺的开始, (2)同时,团队在日期区间[5.2 ...
- VMware威睿
VMware总部位于美国加州帕洛阿尔托 [1] ,是全球云基础架构和移动商务解决方案厂商,提供基于VMware的解决方案, 企业通过数据中心改造和公有云整合业务,借助企业安全转型维系客户信任 [2- ...
- CI框架在模型中切换读写库和读写库
如果你想在控制器中切换在application/config/database.php中配置好的数据库group,那么你可以参考这篇博客:CI框架在控制器中切换读写库和读写库 如果你是希望在模型中切换 ...
- 三、Object 对象常用操作方法
Object 构造方法 一.asign vs 扩展运算符 ... 1.共同点:都是浅拷贝 2.开发推荐 扩展运算符... let obj={ name: 'Tom', age: 18 }; let o ...
- C#中闭包的陷阱
我们在使用lambda的时候会遇到闭包,在闭包中有一个陷阱是在for循环中产生的,先上代码: class Program { static void Main(string[] args) { Act ...
- 面试题(校招java)
1:linux线程和进程的区别? 进程是程序执行时的一个实例,即它是程序已经执行到课中程度的数据结构的汇集.从内核的观点看,进程的目的就是担当分配系统资源(CPU时间.内存等)的基本单位. 线程是进程 ...
- Redis 安装学习
Linux下下载安装redis https://redis.io/download tar -zvxf redisxxx cd redisxxxx make ---进行安装 vim ~.bash_p ...
- oracle查看表结构命令desc