【UOJ#246】套路(动态规划)
【UOJ#246】套路(动态规划)
题面
题解
假如答案的选择的区间长度很小,我们可以做一个暴力\(dp\)计算\(s(l,r)\),即\(s(l,r)=min(s(l+1,r),s(l,r-1),abs(a_r-a_l))\)。
我们发现\(s(l,r)\le \frac{m}{r-l+1}\),那么当长度足够大的时候\(s(l,r)\)的取值很小。
所以我们对于询问分治处理,当长度小于\(\sqrt m\)时,直接\(dp\)计算贡献。
否则,当长度大于\(\sqrt m\)时,枚举\(s(l,r)\)的值,对于每个右端点计算其合法的最大左端点。
复杂度\(O(n\sqrt m)\)
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define ll long long
#define MAX 200200
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
ll ans;
int a[MAX],n,m,k,blk,s[MAX],lst[MAX],pos[MAX];
int main()
{
n=read();m=read();k=read();blk=sqrt(m)+1;
for(int i=1;i<=n;++i)a[i]=read(),s[i]=m;
for(int l=2;l<=blk;++l)
{
for(int j=1;j+l-1<=n;++j)s[j]=min(abs(a[j]-a[j+l-1]),min(s[j],s[j+1]));
if(l>=k)for(int j=1;j+l-1<=n;++j)ans=max(ans,1ll*(l-1)*s[j]);
}
for(int i=1;i<=n;lst[a[i]]=i,++i)
for(int j=0,r=0;j<=blk;++j)
{
if(a[i]-j>=1)pos[j]=max(pos[j],lst[a[i]-j]);
if(a[i]+j<=m)pos[j]=max(pos[j],lst[a[i]+j]);
if(pos[j]>r&&i-r>=k)ans=max(ans,1ll*(i-r-1)*j);
r=max(r,pos[j]);
}
printf("%lld\n",ans);
return 0;
}
【UOJ#246】套路(动态规划)的更多相关文章
- UOJ#246. 【UER #7】套路
题目传送门 官方题解传送门 一句话题意的话就是给定一个序列,从中找出至少$k$个连续的元素形成子序列,使得子序列中任意两个元素差值的最小值于其长度-1的乘积最大. 题目中给出了$ 1 \leq a_i ...
- 【UOJ #246】【UER #7】套路
http://uoj.ac/contest/35/problem/246 神奇!我这辈子是想不出这样的算法了. 对区间长度分类讨论:题解很好的~ 我已经弱到爆了,看完题解后还想了一晚上. 题解中&qu ...
- lintcode :最大子数组
题目: 最大子数组 给定一个整数数组,找到一个具有最大和的子数组,返回其最大和. 样例 给出数组[−2,2,−3,4,−1,2,1,−5,3],符合要求的子数组为[4,−1,2,1],其最大和为6 ...
- 【UOJ#311】【UNR #2】积劳成疾(动态规划)
[UOJ#311][UNR #2]积劳成疾(动态规划) UOJ Solution 考虑最大值分治解决问题.每次枚举最大值所在的位置,强制不能跨过最大值,左右此时不会影响,可以分开考虑. 那么设\(f[ ...
- 【UOJ#340】【清华集训2017】小 Y 和恐怖的奴隶主(矩阵快速幂,动态规划)
[UOJ#340][清华集训2017]小 Y 和恐怖的奴隶主(矩阵快速幂,动态规划) 题面 UOJ 洛谷 题解 考虑如何暴力\(dp\). 设\(f[i][a][b][c]\)表示当前到了第\(i\) ...
- 【UOJ#275】组合数问题(卢卡斯定理,动态规划)
[UOJ#275]组合数问题(卢卡斯定理,动态规划) 题面 UOJ 题解 数据范围很大,并且涉及的是求值,没法用矩阵乘法考虑. 发现\(k\)的限制是,\(k\)是一个质数,那么在大组合数模小质数的情 ...
- 【BZOJ4903】【UOJ#300】吉夫特(卢卡斯定理,动态规划)
[BZOJ4903][UOJ#300]吉夫特(卢卡斯定理,动态规划) 题面 UOJ BZOJ:给的UOJ的链接...... 题解 首先模的质数更小了,直接给定了\(2\).当然是卢卡斯定理了啊. 考虑 ...
- uoj 300 [CTSC2017]吉夫特 - Lucas - 分块 - 动态规划
题目传送门 戳此处转移 题目大意 给定一个长为$n$的序列,问它有多少个长度大于等于2的子序列$b_{1}, b_{2}, \cdots, b_{k}$满足$\prod_{i = 2}^{k}C_{b ...
- 【UOJ#50】【UR #3】链式反应(分治FFT,动态规划)
[UOJ#50][UR #3]链式反应(分治FFT,动态规划) 题面 UOJ 题解 首先把题目意思捋一捋,大概就是有\(n\)个节点的一棵树,父亲的编号大于儿子. 满足一个点的儿子有\(2+c\)个, ...
随机推荐
- 一个出色的表格(React实现__ES5语法)
本文主要是<React快速上手开发>一书中,第三章的内容代码整理,因为书中的代码零零散散,所以自己将整理了一下. 排序和编辑功能 <script> var header = [ ...
- PAT L2-023 图着色问题
https://pintia.cn/problem-sets/994805046380707840/problems/994805057298481152 图着色问题是一个著名的NP完全问题.给定无向 ...
- 企业级分布式应用服务EDAS _Dubbo商业版_微服务PaaS平台 【EDAS Serverless 运维 创业】
企业级分布式应用服务EDAS _Dubbo商业版_微服务PaaS平台_分布式框架 - 阿里云https://www.aliyun.com/product/edas?source_type=yqzb_e ...
- Zabbix appliance manual
https://www.zabbix.com/documentation/4.0/manual/appliance If the appliance fails to start up in Hype ...
- asp.net core认证和授权的初始认识--claim、claimsidentity、claimsprincipal
Claim表示一个声明单元,它用来组成ClaimsIdentity.ClaimsIdentity表示一个证件,例如身份证,身份证上面的名字表示一个Claim,身份证号也表示一个Claim,所有这些Cl ...
- 解读event.returnValue和return false
前言 首先我们要清楚returnValue是IE的一个属性,如果设置了该属性,它的值比事件句柄的返回值优先级要高,把它的值设置为false,可以取消发生事件源元素的默认动作:return false就 ...
- [转帖]PAT 计算机程序设计能力考试
PAT 计算机程序设计能力考试 https://blog.csdn.net/bat67/article/details/52134211 [官方简介] 计算机程序设计能力考试(Programming ...
- Java中List集合去除重复数据的四种方法
1. 循环list中的所有元素然后删除重复 public static List removeDuplicate(List list) { for ( int i = 0 ; i < lis ...
- re正则表达式-1
匹配/查找/替换/分割函数: import re re.match('aa','aabbcc') 返回对象中span为开始位置和结束位置 re.match('aa','bbaacc') #返回值为No ...
- python之路--MySQL权限管理 数据备份还原
一 权限管理 mysql最高管理者是root用户, 这个一般掌握在公司DBA手里, 当你想去对数据库进行一些操作的时候,需要DBA授权给你. 1. 对新用户增删改 1. 创建用户 # 要先use my ...