因为是circle sequence,可以在序列最后+序列前n项(或前k项);利用前缀和思想,预处理出前i个数的和为sum[i],则i~j的和就为sum[j]-sum[i-1],对于每个j,取最小的sum[i-1],这就转成一道单调队列了,维护k个数的最小值。

----------------------------------------------------------------------------------

#include<cstdio>
#include<deque>
#define rep(i,n) for(int i=0;i<n;i++)
#define Rep(i,l,r) for(int i=l;i<=r;i++)
using namespace std;
const int maxn=100000*2+5;
const int inf=1<<30;
int sum[maxn];
deque<int> q;
deque<int> num;
int main()
{
freopen("test.in","r",stdin);
freopen("test.out","w",stdout);
int kase;
scanf("%d",&kase);
while(kase--) {
sum[0]=0;
int n,k,t;
scanf("%d%d",&n,&k);
Rep(i,1,n) {
scanf("%d",&t);
sum[i]=sum[i-1]+t;
}
Rep(i,1,n) sum[i+n]=sum[n]+sum[i];
while(!q.empty()) { q.pop_back(); num.pop_back(); }
int ans[3]={-inf,0,0};
rep(i,n+n) {
if(i && sum[i]-q.front()>ans[0]) {
ans[0]=sum[i]-q.front();
ans[1]=num.front()+1; ans[2]=i;
}
if(!q.empty()) {
if(num.front()+k<i+1) { q.pop_front(); num.pop_front(); }
while(!q.empty() && q.back()>=sum[i]) { 
   q.pop_back();
num.pop_back(); 
}
}
q.push_back(sum[i]);
num.push_back(i);
}
if(ans[2]>n) ans[2]%=n;
printf("%d %d %d\n",ans[0],ans[1],ans[2]);
}
return 0;
}

----------------------------------------------------------------------------------

Max Sum of Max-K-sub-sequenceTime Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 6213    Accepted Submission(s): 2270

Problem Description
Given a circle sequence A[1],A[2],A[3]......A[n]. Circle sequence means the left neighbour of A[1] is A[n] , and the right neighbour of A[n] is A[1].
Now your job is to calculate the max sum of a Max-K-sub-sequence. Max-K-sub-sequence means a continuous non-empty sub-sequence which length not exceed K.
 

Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases. 
Then T lines follow, each line starts with two integers N , K(1<=N<=100000 , 1<=K<=N), then N integers followed(all the integers are between -1000 and 1000).
 

Output
For each test case, you should output a line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the minimum start position, if still more than one , output the minimum length of them.
 

Sample Input
4 6 3 6 -1 2 -6 5 -5 6 4 6 -1 2 -6 5 -5 6 3 -1 2 -6 5 -5 6 6 6 -1 -1 -1 -1 -1 -1
 

Sample Output
7 1 3 7 1 3 7 6 2 -1 1 1
 

Author
shǎ崽@HDU
 

Source
 

Recommend
lcy   |   We have carefully selected several similar problems for you:  3423 3417 3418 3419 3421 

HDOJ 3415 Max Sum of Max-K-sub-sequence(单调队列)的更多相关文章

  1. hdu 1003 Max Sum (DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1003 Max Sum Time Limit: 2000/1000 MS (Java/Others)   ...

  2. hdu 3415 单调队列

    Max Sum of Max-K-sub-sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  3. 【HDOJ】【3415】Max Sum of Max-K-sub-sequence

    DP/单调队列优化 呃……环形链求最大k子段和. 首先拆环为链求前缀和…… 然后单调队列吧<_<,裸题没啥好说的…… WA:为毛手写队列就会挂,必须用STL的deque?(写挂自己弱……s ...

  4. HDU 3415 Max Sum of Max-K-sub-sequence 最长K子段和

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=3415 意甲冠军:环.要找出当中9长度小于等于K的和最大的子段. 思路:不能採用最暴力的枚举.题目的数据量是 ...

  5. POJ 3415 Max Sum of Max-K-sub-sequence (线段树+dp思想)

    Max Sum of Max-K-sub-sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  6. hdu 3415 Max Sum of Max-K-sub-sequence(单调队列)

    题目链接:hdu 3415 Max Sum of Max-K-sub-sequence 题意: 给你一串形成环的数,让你找一段长度不大于k的子段使得和最大. 题解: 我们先把头和尾拼起来,令前i个数的 ...

  7. hdu 3415 Max Sum of Max-K-sub-sequence 单调队列。

    Max Sum of Max-K-sub-sequence Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ...

  8. [LeetCode] Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K

    Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...

  9. Leetcode: Max Sum of Rectangle No Larger Than K

    Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...

随机推荐

  1. 一个基于Qt的截屏程序

    最近有一个arm板上的程序需要重写用户手册,在网上找了许久,没找到合适的截屏工具.于是只好自己动手做一个了. 因为arm板上有已经有了Qt环境,于是想到用 Qt的QPixmap::grabWindow ...

  2. SQLite for C#

    slqlite是个轻量级的数据库,是目前较为流行的小型数据库,适用于各个系统..NET自然也是支持的 1.添加2个引用System.Data.SQLite.Linq,System.Data.SQLit ...

  3. VIM中格式化json

    在vim输入以下命令就可以格式化:%!python -m json.tool可以在~/.vimrc增加快捷键map <F4><Esc>:%!python -m json.too ...

  4. jjjjQuery选择器

    此文为作者自用复习文章 jQuery选择器: 它不仅继承了CSS选择器简洁的语法, 还继承了其获取页面便捷高效的特点, 它还拥有更加完善的处理机制: 但jQuery选择器获取元素后,为该元素添加的是行 ...

  5. 对Spring from中日期显示格式化问题

    开始时间 结束时间 保存 取消 想在input中让日期格式显示为HH:ss 但是各种百度没有找到答案 最后Google之 http://stackoverflow.com/questions/1173 ...

  6. JavaSE复习日记 : java包机制

    这里是第一个文件,命名为JavaSE_01.java,我在这个文件里面声明了一个m1()方法,通过包机制,我将在另外一个文件夹里访问这个文件里的东西,确切的说是访问这个文件生成的一个class文件; ...

  7. LNNVL函数使用

    显示那些佣金比例(commision)不大于20%或者为NULL的员工的信息. CREATE TABLE plch_employees (     employee_id      INTEGER P ...

  8. Android ActionBar详解(一)--->显示和隐藏ActionBar

    MainActivity如下: package cc.testsimpleactionbar0; import android.os.Bundle; import android.view.View; ...

  9. 面试常用算法——Longest Palindromic Substring(最长回文子串)

    第一种: public static void main(String[] args) { String s = "abcbaaaaabcdcba"; int n,m; Strin ...

  10. delphi 7 下安装 indy 10.5.8 教程

    本教程用 indy 10.5.8 替换 delphi 7 自带的 indy 版本,让大家深入了解 delphi 组件安装的方法. 第一步:下载 indy 10.5.8 组件,解压到合适的目录里.如 D ...