最短路径问题:dijkstar
算法描述:
输入图G,源点v0,输出源点到各点的最短距离D
中间变量v0保存当前已经处理到的顶点集合,v1保存剩余的集合
1.初始化v1,D
2.计算v0到v1各点的最短距离,保存到D
for each i in v0;D(j)=min[D(j),G(v0(1),i)+G(i,j)] ,where j in v1
3.将D中最小的那一项加入到v0,并且从v1删除这一项。
4.转到2,直到v0包含所有顶点。
%dijsk最短路径算法
clear,clc
G=[
inf inf 10 inf 30 100;
inf inf 5 inf inf inf;
inf 5 inf 50 inf inf;
inf inf inf inf inf 10;
inf inf inf 20 inf 60;
inf inf inf inf inf inf;
]; %邻接矩阵
N=size(G,1); %顶点数
v0=1; %源点
v1=ones(1,N); %除去原点后的集合
v1(v0)=0;
%计算和源点最近的点
D=G(v0,:);
while 1
D2=D;
for i=1:N
if v1(i)==0
D2(i)=inf;
end
end
D2
[Dmin id]=min(D2);
if isinf(Dmin),error,end
v0=[v0 id] %将最近的点加入v0集合,并从v1集合中删除
v1(id)=0;
if size(v0,2)==N,break;end
%计算v0(1)到v1各点的最近距离
fprintf('计算v0(1)到v1各点的最近距离\n');v0,v1
id=0;
for j=1:N %计算到j的最近距离
if v1(j)
for i=1:N
if ~v1(i) %i在vo中
D(j)=min(D(j),D(i)+G(i,j));
end
D(j)=min(D(j),G(v0(1),i)+G(i,j));
end
end
end
fprintf('最近距离\n');D
if isinf(Dmin),error,end
end
v0
%>> v0
%v0 =
% 1 3 5 4 6
最短路径问题:dijkstar的更多相关文章
- 最短路径——Dijkstar算法
背景:本文是在小甲鱼数据结构教学视频中的代码的基础上,添加详细注释而完成的.该段代码并不完整,仅摘录了核心算法部分,结合自己的思考,谈谈理解. Dijkstar算法理解: Dijkstar算法的核心思 ...
- 最短路径Dijkstar算法和Floyd算法详解(c语言版)
博客转载自:https://blog.csdn.net/crescent__moon/article/details/16986765 先说说Dijkstra吧,这种算法只能求单源最短路径,那么什么是 ...
- 单源最短路径问题-Dijkstra算法
同样是层序遍历,在每次迭代中挑出最小的设置为已知 ===================================== 2017年9月18日10:00:03 dijkstra并不是完全的层序遍历 ...
- 最短路径——Dijkstra算法
一.相关定义 最短路径:从图中的某个顶点出发到达另外一个顶点的所经过的边的权重和最小的一条路径. 地位:Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据 ...
- 转:ospf学习-----SPF最短路径算法
ospf学习-----SPF最短路径算法 常见的路由协议比如RIP.IGRP.BGP是距离矢量协议,OSPF和ISIS是数据链路状态协议.矢量协议路由器只知道本身和与自身相连的接口路由信息,矢量图只是 ...
- Python数模笔记-NetworkX(2)最短路径
1.最短路径问题的常用算法 最短路径问题是图论研究中的经典算法问题,用于计算图中一个顶点到另一个顶点的最短路径. 1.1 最短路径长度与最短加权路径长度 在日常生活中,最短路径长度与最短路径距离好像并 ...
- Python小白的数学建模课-16.最短路径算法
最短路径问题是图论研究中的经典算法问题,用于计算图中一个顶点到另一个顶点的最短路径. 在图论中,最短路径长度与最短路径距离却是不同的概念和问题,经常会被混淆. 求最短路径长度的常用算法是 Dijkst ...
- Johnson 全源最短路径算法
解决单源最短路径问题(Single Source Shortest Paths Problem)的算法包括: Dijkstra 单源最短路径算法:时间复杂度为 O(E + VlogV),要求权值非负: ...
- Floyd-Warshall 全源最短路径算法
Floyd-Warshall 算法采用动态规划方案来解决在一个有向图 G = (V, E) 上每对顶点间的最短路径问题,即全源最短路径问题(All-Pairs Shortest Paths Probl ...
随机推荐
- [置顶] Oracle 11g R2 ASM:了解 Oracle ASM 基本概念
About Oracle ASM Instances About Oracle ASM Disk Groups About Mirroring and Failure Groups About Ora ...
- c指针点滴1
#include <stdio.h> #include <stdlib.h> void main() { ; int *p = #//&num是一个地址 ...
- android分享到新浪微博,认证+发送微博,
分享到新浪微博,折腾了大半个月,现在终于弄出来了,心里的那个爽呀,太痛快了,哈哈!! 废话少说,首先是认证, 1.进入新浪微博提供的开放平台http://open.weibo.com/ 注册新浪账号. ...
- C++读写CSV文件
前两天看了<Reading and Writing CSV Files in MFC>(http://www.codeproject.com/Articles/53759/Reading- ...
- HTTP协议具体解释
HTTP是一个属于应用层的面向对象的协议.因为其简捷.高速的方式.适用于分布式超媒体信息系统. 它于1990年提出,经过几年的使用与发展,得到不断地完好和扩展.眼下在WWW中使用的是HTTP/1.0的 ...
- [Cycle.js] Fine-grained control over the DOM Source
Currently in our main() function, we get click$ event. function main(sources) { const click$ = sour ...
- poj 3009 Curling 2.0 (dfs )
Curling 2.0 Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 11879 Accepted: 5028 Desc ...
- 关于java中根据身份证求生日和年龄的问题
/*这个也没什么大的功能,也没什么安全验证,只是对输入的身份证号码的长度进行了验证.其他的功能可以自己添加.*/import java.util.*; import java.util.Scanner ...
- transition过渡的趣玩
本例中将三张图(来自网络)进行堆叠,鼠标悬停触发.附有源代码
- 关于transform的2D
在transform的学习中,自己总结了一点经验. 我们知道transform有2D和3D的两大类变换,这里分享下关于2D的属性简单示例: 一.2D变换: (x为水平,y为垂直) 1.skew(斜拉 ...