Sorting It All Out
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 32275   Accepted: 11210

Description

An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not.

Input

Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n <= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input.

Output

For each problem instance, output consists of one line. This line should be one of the following three:

Sorted sequence determined after xxx relations: yyy...y.
Sorted sequence cannot be determined.
Inconsistency found after xxx relations.

where xxx is the number of relations processed at the time either a sorted sequence is determined or an inconsistency is found, whichever comes first, and yyy...y is the sorted, ascending sequence.

Sample Input

  1. 4 6
  2. A<B
  3. A<C
  4. B<C
  5. C<D
  6. B<D
  7. A<B
  8. 3 2
  9. A<B
  10. B<A
  11. 26 1
  12. A<Z
  13. 0 0

Sample Output

  1. Sorted sequence determined after 4 relations: ABCD.
  2. Inconsistency found after 2 relations.
  3. Sorted sequence cannot be determined.

题目大意:给你字母表的前N个字母以及M个他们之间的关系,问最终是全序,偏序,还是出现矛盾。

思路分析:有向图,很明显拓扑排序,这是我做的第二道拓扑排序的题目,在学习图论之前一直以为拓扑

排序就是单纯的一种排序方式,现在才知道它是图论的一部分,有向图,因为本题不仅要求输出结果,还要判断

在输入第几个顺序时得出的结果,因此每输入一组数据就要进行一拓扑排序,拓扑排序本质上一种偏序排序,

当然在一定情况下会出现全序的特殊情况,j!=n,就说明有向图的构建过程中出现了环,有可能直接是反向环,

也有可能是绕一圈后回来,如果队列中元素>1,说明队列中存在两个以上优先级相同的元素,即有向图是偏序的。

不说了,上代码,本题对于拓扑排序的理解还是十分有用的。

代码:

#include <iostream>
#include <algorithm>
#include <stack>
#include <queue>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=27;
int indegree[maxn],ans[maxn],graph[maxn][maxn];
int n,m;
int topsort()
{
    int flag=0;
    int in[maxn];
    int j=0;
    memcpy(in,indegree,sizeof(indegree));//一定要重新定义一个数组,防止对主函数中indegree数组产生影响
    queue<int> q;
    for(int i=0;i<n;i++)
    {
        if(in[i]==0) q.push(i);//将入度为0的点放入队列
    }
    while(!q.empty())
    {
        if(q.size()>1)  flag=1;
        int t=q.front();
        q.pop();//记得弹出
        ans[j++]=t;
        for(int i=0;i<n;i++)
        {
            if(graph[t][i])
            {
                in[i]--;
                if(in[i]==0) q.push(i);
            }
        }
    }
    if(j!=n)//不能拓扑排序 ,存在环
        return 1;
    else if(flag==1) return 2;
    else return 0;
}
int main()
{
    char s[5];
    while(scanf("%d%d",&n,&m)&&(n||m))
    {
        int incon=0,detmin=0;
        memset(graph,0,sizeof(graph));
        memset(indegree,0,sizeof(indegree));
        for(int i=1;i<=m;i++)
        {
            scanf("%s",s);
            if(detmin||incon) continue;
            int a=s[0]-'A';
            int b=s[2]-'A';
            if(graph[a][b]==0)
            {
                graph[a][b]=1;
                indegree[b]++;
            }
            int res=topsort();
            if(res==0)
            {
                detmin=1;
                printf("Sorted sequence determined after %d relations: ",i);
                for(int i=0;i<n;i++)
                printf("%c",ans[i]+'A');
                printf(".\n");
            }
            if(res==1)
            {
                incon=1;
                printf("Inconsistency found after %d relations.\n",i);
            }
        }
        if(!incon&&!detmin) printf("Sorted sequence cannot be determined.\n");
    }

}

poj1094 topsort的更多相关文章

  1. 拓扑排序(topsort)

    本文将从以下几个方面介绍拓扑排序: 拓扑排序的定义和前置条件 和离散数学中偏序/全序概念的联系 典型实现算法解的唯一性问题 Kahn算法 基于DFS的算法 实际例子 取材自以下材料: http://e ...

  2. POJ1094[有向环 拓扑排序]

    Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 33184   Accepted: 11 ...

  3. nyoj349 poj1094 Sorting It All Out(拓扑排序)

    nyoj349   http://acm.nyist.net/JudgeOnline/problem.php?pid=349poj1094   http://poj.org/problem?id=10 ...

  4. POJ 2762 Going from u to v or from v to u?(强联通 + TopSort)

    题目大意: 为了锻炼自己的儿子 Jiajia 和Wind 把自己的儿子带入到一个洞穴内,洞穴有n个房间,洞穴的道路是单向的. 每一次Wind 选择两个房间  x 和 y,   让他的儿子从一个房间走到 ...

  5. POJ1094 拓扑排序

    问题:POJ1094   本题考查拓扑排序算法   拓扑排序:   1)找到入度为0的点,加入已排序列表末尾: 2)删除该点,更新入度数组.   循环1)2)直到 1. 所有点都被删除,则找到一个拓扑 ...

  6. POJ1094 Sorting It All Out(拓扑排序)

    Sorting It All Out Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 30110   Accepted: 10 ...

  7. POJ - 3249 Test for Job (DAG+topsort)

    Description Mr.Dog was fired by his company. In order to support his family, he must find a new job ...

  8. 拓扑排序 topsort详解

    1.定义 对一个有向无环图G进行拓扑排序,是将G中所有顶点排成一个线性序列,通常,这样的线性序列称为满足拓扑次序(Topological Order)的序列,简称拓扑序列. 举例: h3 { marg ...

  9. poj 3648 2-SAT建图+topsort输出结果

    其实2-SAT类型题目的类型比较明确,基本模型差不多是对于n组对称的点,通过给出的限制条件建图连边,然后通过缩点和判断冲突来解决问题.要注意的是在topsort输出结果的时候,缩点后建图需要反向连边, ...

随机推荐

  1. 树莓派编译C++

    首次研究树莓派~  安装的Linux 编译C++时,就出现了问题,未定义!!无法识别 查了原因是没有安装  build-essential 解决方法 sudo apt-get install buil ...

  2. The use of function Merge (update、insert、delete)

    1.The use of function merge(update.insert.delete) Example: #1.Initialize the data create table #test ...

  3. mysql在linux的安装

  4. Java开发环境安装

    一.安装JDK(java development kit) 下载地址:www.oracle.com/technetwork/java/javase/downloads 二.配置Java环境变量 1.J ...

  5. ECSTORE 新建APP应用

    1.用命令新建app // ----- window平台 ----- 直接运行 " 站点根目录/app/base/cmd.bat " 出现命令行后输入 dev:new app my ...

  6. js定时跳转

    在项目中有时会用到定时跳转,自己收藏了一个比较好用的 js写的,不依赖jQuery <script type="text/javascript"> function c ...

  7. commons-lang使用

    跟java.lang这个包的作用类似,Commons Lang这一组API也是提供一些基础的.通用的操作和处理,如自动生成toString()的结果.自动实现hashCode()和equals()方法 ...

  8. resumable.js —— 基于 HTML 5 File API 的文件上传组件 支持续传后台c#实现

    在git上提供了java.nodejs.c#后台服务方式:在这里我要用c#作为后台服务:地址请见:https://github.com/23/resumable.js 我现在visual studio ...

  9. nginx+uwsgi+flask搭建python-web应用程序

    Flask本身就可以直接启动HTTP服务器,但是受限于管理.部署.性能等问题,在生产环境中,我们一般不会使用Flask自身所带的HTTP服务器. 从现在已有的实践来看,对于Flask,比较好的部署方式 ...

  10. android 应用在启动后进行全局的的初始化操作

    例如对于Volley的使用: 1:定义一个类使其继承Application package com.wzh.app; import com.wzh.volley.WzhVolley; import a ...