poj3177 Redundant Paths
Description
Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.
There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.
Input
Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.
Output
Sample Input
7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7
Sample Output
2
Hint
One visualization of the paths is:
1 2 3
+---+---+
| |
| |
6 +---+---+ 4
/ 5
/
/
7 +
Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.
1 2 3
+---+---+
: | |
: | |
6 +---+---+ 4
/ 5 :
/ :
/ :
7 + - - - -
Check some of the routes:
1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2
1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4
3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7
Every pair of fields is, in fact, connected by two routes.
It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.
#include<cstdio>
#include<iostream>
#define LL long long
using namespace std;
inline LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
struct edge{int to,next;}e[1000010];
int n,m,cnt=1,cnt3,tt,sum;
int head[100010];
int dfn[100010],low[100010],belong[100010];
int zhan[100010],top;
bool inset[100010];
int I[100010],O[100010];
inline void ins(int u,int v)
{
e[++cnt].to=v;
e[cnt].next=head[u];
head[u]=cnt;
}
inline void insert(int u,int v)
{
ins(u,v);
ins(v,u);
}
inline void dfs(int x,int fa)
{
zhan[++top]=x;inset[x]=1;
dfn[x]=low[x]=++tt;
for(int i=head[x];i;i=e[i].next)
if (i!=(fa^1))
if (!dfn[e[i].to])
{
dfs(e[i].to,i);
low[x]=min(low[x],low[e[i].to]);
}else if (inset[e[i].to])low[x]=min(low[x],dfn[e[i].to]);
if (low[x]==dfn[x])
{
cnt3++;
int p=-1;
while (p!=x)
{
p=zhan[top--];
belong[p]=cnt3;
inset[p]=0;
}
}
}
inline void tarjan()
{
for (int i=1;i<=n;i++)if (!dfn[i])dfs(i,0);
}
int main()
{
n=read();m=read();
for (int i=1;i<=m;i++)
{
int x=read(),y=read();
insert(x,y);
}
tarjan();
for (int i=1;i<=n;i++)
for (int j=head[i];j;j=e[j].next)
if (belong[i]!=belong[e[j].to])
{
O[belong[i]]++;
I[belong[e[j].to]]++;
}
for (int i=1;i<=cnt3;i++)
if (I[i]==1)sum++;
printf("%d\n",(sum+1)/2);
}
poj3177 Redundant Paths的更多相关文章
- [POJ3177]Redundant Paths(双联通)
在看了春晚小彩旗的E技能(旋转)后就一直在lol……额抽点时间撸一题吧…… Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Tota ...
- POJ3177 Redundant Paths 双连通分量
Redundant Paths Description In order to get from one of the F (1 <= F <= 5,000) grazing fields ...
- POJ3177:Redundant Paths(并查集+桥)
Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 19316 Accepted: 8003 ...
- POJ3177 Redundant Paths —— 边双联通分量 + 缩点
题目链接:http://poj.org/problem?id=3177 Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total ...
- POJ3177 Redundant Paths(边双连通分量+缩点)
题目大概是给一个无向连通图,问最少加几条边,使图的任意两点都至少有两条边不重复路径. 如果一个图是边双连通图,即不存在割边,那么任何两个点都满足至少有两条边不重复路径,因为假设有重复边那这条边一定就是 ...
- [POJ3177]Redundant Paths(双连通图,割边,桥,重边)
题目链接:http://poj.org/problem?id=3177 和上一题一样,只是有重边. 如何解决重边的问题? 1. 构造图G时把重边也考虑进来,然后在划分边双连通分量时先把桥删去,再划分 ...
- POJ3177 Redundant Paths【双连通分量】
题意: 有F个牧场,1<=F<=5000,现在一个牧群经常需要从一个牧场迁移到另一个牧场.奶牛们已经厌烦老是走同一条路,所以有必要再新修几条路,这样它们从一个牧场迁移到另一个牧场时总是可以 ...
- poj3352 Road Construction & poj3177 Redundant Paths (边双连通分量)题解
题意:有n个点,m条路,问你最少加几条边,让整个图变成边双连通分量. 思路:缩点后变成一颗树,最少加边 = (度为1的点 + 1)/ 2.3177有重边,如果出现重边,用并查集合并两个端点所在的缩点后 ...
- POJ3177 Redundant Paths【tarjan边双联通分量】
LINK 题目大意 给你一个有重边的无向图图,问你最少连接多少条边可以使得整个图双联通 思路 就是个边双的模板 注意判重边的时候只对父亲节点需要考虑 你就dfs的时候记录一下出现了多少条连向父亲的边就 ...
随机推荐
- 初学者学Java(十五)
再谈数组 在这一篇中我们来讲一下关于数组的排序和查找的方法. 排序 说到数组的排序,就不得不说冒泡这种经典的方法. 1.冒泡排序 冒泡排序的基本思想是比较两个相邻元素的值,如果满足条件就交换元素的值( ...
- [Flexbox] Using flex-direction to layout content horizontally and vertically
The Flexbox css spec allows for more adjustable layouts. The flex-directionproperty allows you to ea ...
- android studio 的部分设置
1.android studio 如何提示方法的用法 在 Eclipse中鼠标放上去就可以提示方法的用法,实际上Android Studio也可以设置的.如图 Preferences > Edi ...
- oracle手动删除数据库
有时候,无法使用图形界面时,我们需要手动删除数据库,具体操作步骤如下:一.手动删除文件系统数据库 1.停止监听,防止有新的连接产生,同时,在数据库配置了em的,也需要停止 $ lsnrctl st ...
- SpringMVC01
1.创建一个web项目 引入所需要的jar 2.在web.xml文件中配置 核心控制器 <?xml version="1.0" encoding="UTF-8&q ...
- ASP.NET-FineUI开发实践-8
上回模拟的是下拉grid,这回我把下拉grid和表格自动补全放一起了,实在是好做,但是也有很多要注意的,现在分享下,大家学习. 接上回 传送门 1. 有个tbxMyBox1_TriggerClick ...
- WinHeap.H
网上找到的,对 Windows Heap 有详细的定义. // file winheap.h typedef void VOID; typedef unsigned __int8 UINT8; typ ...
- SQL从入门到基础 - 01 数据库开发及ADO.Net
一.数据库概述 1. 用自定义文件格式保存数据的劣势:并发性差,查找数据的速度差. 2. DBMS(DataBase Management System数据库管理系统)和数据库.平时谈到“数据库”的含 ...
- SQL2008 存储过程参数相关
使用inputparame时,使用的是 varchar(20),和数据库中的DEPARTNAME完全匹配,可以查出值: USE [test] GO SET ANSI_NULLS OFF GO SE ...
- Redhat Enterprise 5.4下安装配置Oracle 11g R2详细过程
1.Linux环境配置准备 环境:Linux:Redhat Enterprise 5.4,DB:Oracle 11g R2 X64,Oracle安装到/home/oralce_11目录下. 配置过程如 ...