Description

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another.

Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.

There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

Input

Line 1: Two space-separated integers: F and R

Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

Output

Line 1: A single integer that is the number of new paths that must be built.

Sample Input

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7

Sample Output

2

Hint

Explanation of the sample:

One visualization of the paths is:

   1   2   3
+---+---+
| |
| |
6 +---+---+ 4
/ 5
/
/
7 +

Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.

   1   2   3
+---+---+
: | |
: | |
6 +---+---+ 4
/ 5 :
/ :
/ :
7 + - - - -

Check some of the routes: 
1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2 
1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4 
3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7 
Every pair of fields is, in fact, connected by two routes.

It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.

 
模拟赛第二题居然考边双联通分量……我图论很差的啊
题意是给一个连通图,最少添加多少条边,使得任意两点之间有两条无公共边的路(可以有公共点)
这题有个结论的……若tarjan缩完点后所有叶节点的个数是x,那么答案是(x+1)/2
这个要画图理解,有点麻烦。(这时候你就需要善良的学长)
总之就是每次选取lca最大的两个点连无向边,一直到叶节点搞完为止。+1是因为如果两两配对完还剩一个还要再连一条
#include<cstdio>
#include<iostream>
#define LL long long
using namespace std;
inline LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
struct edge{int to,next;}e[1000010];
int n,m,cnt=1,cnt3,tt,sum;
int head[100010];
int dfn[100010],low[100010],belong[100010];
int zhan[100010],top;
bool inset[100010];
int I[100010],O[100010];
inline void ins(int u,int v)
{
e[++cnt].to=v;
e[cnt].next=head[u];
head[u]=cnt;
}
inline void insert(int u,int v)
{
ins(u,v);
ins(v,u);
}
inline void dfs(int x,int fa)
{
zhan[++top]=x;inset[x]=1;
dfn[x]=low[x]=++tt;
for(int i=head[x];i;i=e[i].next)
if (i!=(fa^1))
if (!dfn[e[i].to])
{
dfs(e[i].to,i);
low[x]=min(low[x],low[e[i].to]);
}else if (inset[e[i].to])low[x]=min(low[x],dfn[e[i].to]);
if (low[x]==dfn[x])
{
cnt3++;
int p=-1;
while (p!=x)
{
p=zhan[top--];
belong[p]=cnt3;
inset[p]=0;
}
}
}
inline void tarjan()
{
for (int i=1;i<=n;i++)if (!dfn[i])dfs(i,0);
}
int main()
{
n=read();m=read();
for (int i=1;i<=m;i++)
{
int x=read(),y=read();
insert(x,y);
}
tarjan();
for (int i=1;i<=n;i++)
for (int j=head[i];j;j=e[j].next)
if (belong[i]!=belong[e[j].to])
{
O[belong[i]]++;
I[belong[e[j].to]]++;
}
for (int i=1;i<=cnt3;i++)
if (I[i]==1)sum++;
printf("%d\n",(sum+1)/2);
}

  

poj3177 Redundant Paths的更多相关文章

  1. [POJ3177]Redundant Paths(双联通)

    在看了春晚小彩旗的E技能(旋转)后就一直在lol……额抽点时间撸一题吧…… Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Tota ...

  2. POJ3177 Redundant Paths 双连通分量

    Redundant Paths Description In order to get from one of the F (1 <= F <= 5,000) grazing fields ...

  3. POJ3177:Redundant Paths(并查集+桥)

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19316   Accepted: 8003 ...

  4. POJ3177 Redundant Paths —— 边双联通分量 + 缩点

    题目链接:http://poj.org/problem?id=3177 Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total ...

  5. POJ3177 Redundant Paths(边双连通分量+缩点)

    题目大概是给一个无向连通图,问最少加几条边,使图的任意两点都至少有两条边不重复路径. 如果一个图是边双连通图,即不存在割边,那么任何两个点都满足至少有两条边不重复路径,因为假设有重复边那这条边一定就是 ...

  6. [POJ3177]Redundant Paths(双连通图,割边,桥,重边)

    题目链接:http://poj.org/problem?id=3177 和上一题一样,只是有重边. 如何解决重边的问题? 1.  构造图G时把重边也考虑进来,然后在划分边双连通分量时先把桥删去,再划分 ...

  7. POJ3177 Redundant Paths【双连通分量】

    题意: 有F个牧场,1<=F<=5000,现在一个牧群经常需要从一个牧场迁移到另一个牧场.奶牛们已经厌烦老是走同一条路,所以有必要再新修几条路,这样它们从一个牧场迁移到另一个牧场时总是可以 ...

  8. poj3352 Road Construction & poj3177 Redundant Paths (边双连通分量)题解

    题意:有n个点,m条路,问你最少加几条边,让整个图变成边双连通分量. 思路:缩点后变成一颗树,最少加边 = (度为1的点 + 1)/ 2.3177有重边,如果出现重边,用并查集合并两个端点所在的缩点后 ...

  9. POJ3177 Redundant Paths【tarjan边双联通分量】

    LINK 题目大意 给你一个有重边的无向图图,问你最少连接多少条边可以使得整个图双联通 思路 就是个边双的模板 注意判重边的时候只对父亲节点需要考虑 你就dfs的时候记录一下出现了多少条连向父亲的边就 ...

随机推荐

  1. Android实现后台长期监听时间变化

    1.首先我们的目的是长期监听时间变化,事实上应用程序退出. 通过了解我们知道注冊ACTION_TIME_TICK广播接收器能够监听系统事件改变,可是 查看SDK发现ACTION_TIME_TICK广播 ...

  2. javascript加载图片获取图片尺寸信息方法

    如果你遇到不方便从服务器取图片尺寸信息的话,用下面代码就很方便了. // 更新: // 05.27: 1.保证回调执行顺序:error > ready > load:2.回调函数this指 ...

  3. UVA 11770 Lighting Away

    RunID User Problem Result Memory Time Language Length Submit Time 2482977 zhyfzy J Accepted 0 KB 138 ...

  4. 关于 gravity与layout_gravity

    区别 gravity与layout_gravity的区别在于: android:gravity是用来设置该view中内容相对于该view组件的对齐方式 android:layout_gravity是用 ...

  5. 第2章 来点C#的感觉

    创建控制台项目 using System; using System.Collections.Generic; using System.Linq; using System.Text; using ...

  6. 使用HighCharts实现实时数据展示

    在众多的工业控制系统领域常常会实时采集现场的温度.压力.扭矩等数据,这些数据对于监控人员进行现场态势感知.进行未来趋势预测具有重大指导价值.工程控制人员如果只是阅读海量的数据报表,对于现场整个态势的掌 ...

  7. shell 数组(in_array)

    if [[ ! "${array[@]}" =~ $val ]] ; then fi

  8. 在C#中internal关键字是什么意思?和protected internal区别

    我来补充一下,对于一些大型的项目,通常由很多个DLL文件组成,引用了这些DLL,就能访问DLL里面的类和类里面的方法.比如,你写了一个记录日志的DLL,任何项目只要引用此DLL就能实现记录日志的功能, ...

  9. 装饰(Decorator)模式

    1.装饰(Decorator)模式    动态给一个对象添加一些额外的职责.就增加功能来说,装饰模式比生成子类更为灵活.Component是定义一个对象接口.可以给这些对象动态地添加职责.Concre ...

  10. 在 ASP.NET 网页中不经过回发而实现客户端回调

    一.使用回调函数的好处 在 ASP.NET 网页的默认模型中,用户会与页交互,单击按钮或执行导致回发的一些其他操作.此时将重新创建页及其控件,并在服务器上运行页代码,且新版本的页被呈现到浏览器.但是, ...