Description

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another.

Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.

There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

Input

Line 1: Two space-separated integers: F and R

Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

Output

Line 1: A single integer that is the number of new paths that must be built.

Sample Input

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7

Sample Output

2

Hint

Explanation of the sample:

One visualization of the paths is:

   1   2   3
+---+---+
| |
| |
6 +---+---+ 4
/ 5
/
/
7 +

Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions.

   1   2   3
+---+---+
: | |
: | |
6 +---+---+ 4
/ 5 :
/ :
/ :
7 + - - - -

Check some of the routes: 
1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2 
1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4 
3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7 
Every pair of fields is, in fact, connected by two routes.

It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.

 
模拟赛第二题居然考边双联通分量……我图论很差的啊
题意是给一个连通图,最少添加多少条边,使得任意两点之间有两条无公共边的路(可以有公共点)
这题有个结论的……若tarjan缩完点后所有叶节点的个数是x,那么答案是(x+1)/2
这个要画图理解,有点麻烦。(这时候你就需要善良的学长)
总之就是每次选取lca最大的两个点连无向边,一直到叶节点搞完为止。+1是因为如果两两配对完还剩一个还要再连一条
#include<cstdio>
#include<iostream>
#define LL long long
using namespace std;
inline LL read()
{
LL x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
struct edge{int to,next;}e[1000010];
int n,m,cnt=1,cnt3,tt,sum;
int head[100010];
int dfn[100010],low[100010],belong[100010];
int zhan[100010],top;
bool inset[100010];
int I[100010],O[100010];
inline void ins(int u,int v)
{
e[++cnt].to=v;
e[cnt].next=head[u];
head[u]=cnt;
}
inline void insert(int u,int v)
{
ins(u,v);
ins(v,u);
}
inline void dfs(int x,int fa)
{
zhan[++top]=x;inset[x]=1;
dfn[x]=low[x]=++tt;
for(int i=head[x];i;i=e[i].next)
if (i!=(fa^1))
if (!dfn[e[i].to])
{
dfs(e[i].to,i);
low[x]=min(low[x],low[e[i].to]);
}else if (inset[e[i].to])low[x]=min(low[x],dfn[e[i].to]);
if (low[x]==dfn[x])
{
cnt3++;
int p=-1;
while (p!=x)
{
p=zhan[top--];
belong[p]=cnt3;
inset[p]=0;
}
}
}
inline void tarjan()
{
for (int i=1;i<=n;i++)if (!dfn[i])dfs(i,0);
}
int main()
{
n=read();m=read();
for (int i=1;i<=m;i++)
{
int x=read(),y=read();
insert(x,y);
}
tarjan();
for (int i=1;i<=n;i++)
for (int j=head[i];j;j=e[j].next)
if (belong[i]!=belong[e[j].to])
{
O[belong[i]]++;
I[belong[e[j].to]]++;
}
for (int i=1;i<=cnt3;i++)
if (I[i]==1)sum++;
printf("%d\n",(sum+1)/2);
}

  

poj3177 Redundant Paths的更多相关文章

  1. [POJ3177]Redundant Paths(双联通)

    在看了春晚小彩旗的E技能(旋转)后就一直在lol……额抽点时间撸一题吧…… Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Tota ...

  2. POJ3177 Redundant Paths 双连通分量

    Redundant Paths Description In order to get from one of the F (1 <= F <= 5,000) grazing fields ...

  3. POJ3177:Redundant Paths(并查集+桥)

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19316   Accepted: 8003 ...

  4. POJ3177 Redundant Paths —— 边双联通分量 + 缩点

    题目链接:http://poj.org/problem?id=3177 Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total ...

  5. POJ3177 Redundant Paths(边双连通分量+缩点)

    题目大概是给一个无向连通图,问最少加几条边,使图的任意两点都至少有两条边不重复路径. 如果一个图是边双连通图,即不存在割边,那么任何两个点都满足至少有两条边不重复路径,因为假设有重复边那这条边一定就是 ...

  6. [POJ3177]Redundant Paths(双连通图,割边,桥,重边)

    题目链接:http://poj.org/problem?id=3177 和上一题一样,只是有重边. 如何解决重边的问题? 1.  构造图G时把重边也考虑进来,然后在划分边双连通分量时先把桥删去,再划分 ...

  7. POJ3177 Redundant Paths【双连通分量】

    题意: 有F个牧场,1<=F<=5000,现在一个牧群经常需要从一个牧场迁移到另一个牧场.奶牛们已经厌烦老是走同一条路,所以有必要再新修几条路,这样它们从一个牧场迁移到另一个牧场时总是可以 ...

  8. poj3352 Road Construction & poj3177 Redundant Paths (边双连通分量)题解

    题意:有n个点,m条路,问你最少加几条边,让整个图变成边双连通分量. 思路:缩点后变成一颗树,最少加边 = (度为1的点 + 1)/ 2.3177有重边,如果出现重边,用并查集合并两个端点所在的缩点后 ...

  9. POJ3177 Redundant Paths【tarjan边双联通分量】

    LINK 题目大意 给你一个有重边的无向图图,问你最少连接多少条边可以使得整个图双联通 思路 就是个边双的模板 注意判重边的时候只对父亲节点需要考虑 你就dfs的时候记录一下出现了多少条连向父亲的边就 ...

随机推荐

  1. <Win32_8>由浅入深——滚动条

    滚动条在Win32程序中是非常常见的一个控件,它的功能和地位也就不言而喻了,在文本输出中算是一个难点…… 我将借用P先生的思路讲述两种不同风格滚动条,下面切入主题:(实例程序都是显示一张位图  当然, ...

  2. [AngularJS] Services, Factories, and Providers -- value & Providers

    Creating a Value Object Sometimes you have javascript object defined: //value object var droidValue ...

  3. android不自动弹出虚拟键盘

    如果是Activity的话 在 Manifest.xml 相应的 Activity 里添加 android:windowSoftInputMode="adjustPan|stateHidde ...

  4. git clone之后自动checkout文件处理

    这个问题发生是因为不同操作系统的行结束符不一致导致的,可在clone之后在仓库根目录修改.gitattributes文件 简单处理的话,注释* text=auto这行即可.也可根据不同系统,做相应设定 ...

  5. Chapter 7. Dependency Management Basics 依赖管理基础

    This chapter introduces some of the basics of dependency management in Gradle. 7.1. What is dependen ...

  6. git pull 代码很慢的问题

    办公环境调整,之前开发机是和自己的电脑放同一网段内的,现在开发机放至到本地其他网段内,造成pull 代码很慢的问题,在网上查了一下 以下是原文,链接为 http://blog.sina.com.cn/ ...

  7. ASP.NET-FineUI开发实践-2

    FineUI好处之一在于No JS,这里的No JS并不是不使用JS,JS对于ASP.Net是必不可少的,只是FineUI把大部分JS封装,如果想用,后台提供了很多方法返回JS,Get...Refer ...

  8. activiti_SpringEnvironment

    package main; import org.activiti.engine.ProcessEngine; import org.activiti.engine.ProcessEngines; i ...

  9. 关于导出oracle多个表的建表语句DLL,生成.sql语句。

    --('TABLE','LINE','ODS_XX')这里面的表和用户都需要大写.如果表名用户名不大写会报这个错误:对象 "emp" 属于类型 TABLE, 在方案 "s ...

  10. VM下Linux网卡丢失(pcnet32 device eth0 does not seem to be ...)解决方案

    系统启动日志:Bringing up interface eth0: pcnet32 device eth0 does not seepresent, delaying initialization. ...