POJ 1861 Network (模版kruskal算法)
Network
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: Accepted: Special Judge
Description Andrew is working as system administrator and is planning to establish a new network in his company. There will be N hubs in the company, they can be connected to each other using cables. Since each worker of the company must have access to the whole network, each hub must be accessible by cables from any other hub (with possibly some intermediate hubs).
Since cables of different types are available and shorter ones are cheaper, it is necessary to make such a plan of hub connection, that the maximum length of a single cable is minimal. There is another problem — not each hub can be connected to any other one because of compatibility problems and building geometry limitations. Of course, Andrew will provide you all necessary information about possible hub connections.
You are to help Andrew to find the way to connect hubs so that all above conditions are satisfied.
Input The first line of the input contains two integer numbers: N - the number of hubs in the network ( <= N <= ) and M - the number of possible hub connections ( <= M <= ). All hubs are numbered from to N. The following M lines contain information about possible connections - the numbers of two hubs, which can be connected and the cable length required to connect them. Length is a positive integer number that does not exceed . There will be no more than one way to connect two hubs. A hub cannot be connected to itself. There will always be at least one way to connect all hubs.
Output Output first the maximum length of a single cable in your hub connection plan (the value you should minimize). Then output your plan: first output P - the number of cables used, then output P pairs of integer numbers - numbers of hubs connected by the corresponding cable. Separate numbers by spaces and/or line breaks.
Sample Input Sample Output
View Question
代码WA了,待查找原因
#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
#include<algorithm>
using namespace std;
#define MAX 1000
int father[MAX], son[MAX], Min=0x3fffffff;
int v, l; typedef struct Kruskal //存储边的信息
{
int a;
int b;
int value;
}; bool cmp(const Kruskal & a, const Kruskal & b)
{
return a.value < b.value;
} int unionsearch(int x) //查找根结点+路径压缩
{
return x == father[x] ? x : unionsearch(father[x]);
} bool join(int x, int y) //合并
{
int root1, root2;
root1 = unionsearch(x);
root2 = unionsearch(y);
if(root1 == root2) //为环
return false;
else if(son[root1] >= son[root2])
{
father[root2] = root1;
son[root1] += son[root2];
}
else
{
father[root1] = root2;
son[root2] += son[root1];
}
return true;
} int main()
{
int ltotal;
int res_f[],res_b[];
Kruskal edge[MAX];
while(scanf("%d%d",&v,&l)!=EOF)
{
ltotal = ;
for(int i = ; i <= v; ++i) //初始化
{
father[i] = i;
son[i] = ;
}
for(int i = ; i <= l ; ++i)
{
scanf("%d%d%d", &edge[i].a, &edge[i].b, &edge[i].value);
}
sort(edge + , edge + + l, cmp); //按权值由小到大排序
for(int i = ; i <= l; ++i)
{
if(join(edge[i].a, edge[i].b))
{
res_f[ltotal]=edge[i].a; res_b[ltotal]=edge[i].b;
ltotal++; //边数加1
//cout<<edge[i].a<<" "<<edge[i].b<<endl;
if(edge[i].value < Min)
Min=edge[i].value;
}
}
printf("%d\n%d\n",Min,ltotal);
for(int i=;i<ltotal;i++){
printf("%d %d\n",res_f[i],res_b[i]);
}
}
return ;
}
克鲁斯卡尔(Kruskal)算法(只与边相关)
算法描述:克鲁斯卡尔算法需要对图的边进行访问,所以克鲁斯卡尔算法的时间复杂度只和边又关系,可以证明其时间复杂度为O(eloge)。
算法过程:
1.将图各边按照权值进行排序
2.将图遍历一次,找出权值最小的边,(条件:此次找出的边不能和已加入最小生成树集合的边构成环),若符合条件,则加入最小生成树的集合中。不符合条件则继续遍历图,寻找下一个最小权值的边。
3.递归重复步骤1,直到找出n-1条边为止(设图有n个结点,则最小生成树的边数应为n-1条),算法结束。得到的就是此图的最小生成树。
克鲁斯卡尔(Kruskal)算法因为只与边相关,则适合求稀疏图的最小生成树。而prime算法因为只与顶点有关,所以适合求稠密图的最小生成树。
摘自http://blog.csdn.net/niushuai666/article/details/6689285
AC代码:
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <malloc.h>
#include <algorithm>
#define MAX 10500
#define INF 0x3FFFFFFF
using namespace std;
int par[MAX],n,m,maxedge,cnt;
struct Edge{
int s,e;
int value;
}edge[MAX],index[MAX]; bool cmp(Edge a, Edge b){
return a.value < b.value;
} int find(int x){
while(par[x] != x)
x = par[x];
return x;
} void connect(int a,int b){
if(a < b)
par[b] = a;
else
par[a] = b;
} void kruskal(){
int i,j;
maxedge = ;
cnt = ;
for(i=; i<=m; i++)
{
int a = find(edge[i].s);
int b = find(edge[i].e);
if(a != b)
{
connect(a,b);
if(maxedge < edge[i].value);
maxedge = edge[i].value;
cnt ++;
index[cnt].s = edge[i].s;
index[cnt].e = edge[i].e;
}
if(cnt >= n-)
break;
}
}
int main(){
int i,j;
while(scanf("%d%d",&n,&m) != EOF){
for(i=; i<=m; i++){
scanf("%d%d%d",&edge[i].s,&edge[i].e,&edge[i].value);
} sort(edge+,edge++m,cmp); for(i=; i<=n; i++){
par[i] = i;
}
memset(index,,sizeof(index));
kruskal();
printf("%d\n%d\n",maxedge,cnt); for(i=; i<=cnt; i++){
printf("%d %d\n",index[i].s,index[i].e);
}
}
return ;
}
POJ 1861 Network (模版kruskal算法)的更多相关文章
- ZOJ 1542 POJ 1861 Network 网络 最小生成树,求最长边,Kruskal算法
题目连接:problemId=542" target="_blank">ZOJ 1542 POJ 1861 Network 网络 Network Time Limi ...
- POJ 1861 Network (Kruskal算法+输出的最小生成树里最长的边==最后加入生成树的边权 *【模板】)
Network Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 14021 Accepted: 5484 Specia ...
- ZOJ 1586 QS Network(Kruskal算法求解MST)
题目: In the planet w-503 of galaxy cgb, there is a kind of intelligent creature named QS. QScommunica ...
- POJ 1861 ——Network——————【最小瓶颈生成树】
Network Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 15268 Accepted: 5987 Specia ...
- POJ 1861 Network
题意:有n个点,部分点之间可以连接无向边,每条可以连接的边都有一个权值.求一种连接方法将这些点连接成一个连通图,且所有连接了的边中权值最大的边权值最小. 解法:水题,直接用Kruskal算法做一遍就行 ...
- POJ 2421 Constructing Roads(Kruskal算法)
题意:给出n个村庄之间的距离,再给出已经连通起来了的村庄.求把所有的村庄都连通要修路的长度的最小值. 思路:Kruskal算法 课本代码: //Kruskal算法 #include<iostre ...
- POJ 2421 Constructing Roads (Kruskal算法+压缩路径并查集 )
Constructing Roads Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 19884 Accepted: 83 ...
- POJ 1861 Network (Kruskal求MST模板题)
Network Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 14103 Accepted: 5528 Specia ...
- POJ 1861 Network (MST)
题意:求解最小生成树,以及最小瓶颈生成树上的瓶颈边. 思路:只是求最小生成树即可.瓶颈边就是生成树上权值最大的那条边. //#include <bits/stdc++.h> #includ ...
随机推荐
- 用wfastcgi在IIS下部署Django&Flask
Django跟Flask在Linux底下都可以很方便地以FastCGI模式部署,貌似IIS下面不很好配置,而且IIS也缺少一个像PHPmanager一样的全自动配置工具,在公司服务器上部署起来颇费周折 ...
- 不用注册热键方式在Delphi中实现定义快捷键(又简单又巧妙,但要当前窗体处在激活状态)
第一步:在要实现快捷键的窗体中更改属性“KeyPreview”为True:第二步:在要实现快捷键的窗体中的OnKeyPress事件中填入一个过程名称(在Object Inspector中),填写好后回 ...
- IIs 网站应用程序与虚拟目录的区别及高级应用说明(文件分布式存储方案)
原文 IIs 网站应用程序与虚拟目录的区别及高级应用说明(文件分布式存储方案) 对于IIS网站,大伙用的比较多,就不啰嗦了. 今天和说说大伙比较少使用的"IIS应用程序”和虚拟目录的区别 ...
- Ubuntu Linux: How Do I install .deb Packages?
Ubuntu Linux: How Do I install .deb Packages? Ubuntu Linux: How Do I install .deb Packages? by Nix C ...
- Book of Evil 树双向DFS
Book of Evil Paladin Manao caught the trail of the ancient Book of Evil in a swampy area. This area ...
- 学习日记之模板方法模式和 Effective C++
模板方法模式: 定义:定义一个操作中的算法的骨架.而将一些步骤延伸到子类中.模板方法使得子类能够不改变算法的结构就可以重定义该算法的某些特定步骤. (1),用了继承,而且肯定这个继承有意义的情况下.就 ...
- <input type="text">文本输人框
type类型: text 文本框 password 口令密码输人框 reset 重置或清除 buttou 命令按钮 checkbox 复选框 radio 单选框 submit 提交 fi ...
- C# inherit
Case:class A has a construct. class B is inherit from class A and B also has a construct. What's the ...
- ppt类似工具AxeFile使用心得
一个所谓的傻瓜式过渡效果自动生成工具.定义好展示窗口大小,加入时序.所谓的闪烁效果,也是相当的滑稽. 是一个非专业的简单的快速PPT工具. 但是体现的确是扁平化的设计思路,很值得深思. ------ ...
- WPF qq界面(转)
原文:http://blog.csdn.net/u013981858/article/details/49130885 刚开始学WPF,自己写了个小东西,说实话写的并不好,好多东西不懂只是用现在懂的东 ...