Rightmost Digit(快速幂+数学知识OR位运算) 分类: 数学 2015-07-03 14:56 4人阅读 评论(0) 收藏
C - Rightmost Digit
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u
Submit Status Practice HDU 1061
Description
Given a positive integer N, you should output the most right digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the rightmost digit of N^N.
Sample Input
2
3
4
Sample Output
7
6
Hint
In the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7. In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.
Difficulty:这题一开始想直接算出那个数,然后再取余数,后来发现这个数太大会超出计算机范围(爆了)。这时就需要用到一定的数学知识:在乘法中最后一位数,只取决于两个数的最后一位数。列如129*19的两个数的最后一位数取决于9*9 =81即129*19最后一位数为1.所以要边计算边取余数。
#include<cstdio>
#include<cstring>
using namespace std;
int t,a,b;
long long n,k,ans;
int main()
{
scanf("%d",&t);
while(t--)
{ a=b=k=0;ans=1;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
a=n%10;
ans*=a;
ans=ans%10;
}
printf("%d\n",ans);
}
return 0;
}
后来发现N给的10的9次方这么大,如果for循环肯定会TLE。这时又要用快速幂来优化:快速幂:
也就是说:a^8=(a^4)^2,这样算一次a^4就等于算了两次a^4了~所以这里我用到递归,a^4=(a^2)^2,a^2=(a^1)^2;那么知道a即可求出。
#include<cstdio>
#include<cstring>
using namespace std;
int t,a,b;
long long n,k,ans,y;
long long pow(long long k,long long n)
{if(k==1)
return n%10;
if(k%2==1)//快速幂
{k=(k-1)/2;
y=pow(k,n);//递归
ans=y*y*n%10;
ans=ans%10;//边计算边取余数
return ans;}
else
{k=k/2;
y=pow(k,n);
ans=y*y;
ans=ans%10;
return ans;
}
}
int main()
{
scanf("%d",&t);
while(t--)
{ a=b=y=0;ans=1;
scanf("%d",&n);
k=n;
printf("%lld\n",pow(k,n));
}
return 0
Way 2:位运算,将n看作是二进制,例如9=111。即N的9次方等于N的2^2次方乘N的2^1次方乘2^0次方。
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
int t,k,b;
long long n;
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%lld",&n);
k=1;
b=n%10;
while(n)
{
if(n%2==1)
{
k*=b;
k=k%10;
}
b*=b;//2进制进位。可以自己手算。
b=b%10;
n=n/2;
//printf("%d\n",k);
}
printf("%d\n",k);
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
Rightmost Digit(快速幂+数学知识OR位运算) 分类: 数学 2015-07-03 14:56 4人阅读 评论(0) 收藏的更多相关文章
- 【solr专题之一】Solr快速入门 分类: H4_SOLR/LUCENCE 2014-07-02 14:59 2403人阅读 评论(0) 收藏
一.Solr学习相关资料 1.官方材料 (1)快速入门:http://lucene.apache.org/solr/4_9_0/tutorial.html,以自带的example项目快速介绍发Solr ...
- 快速幂取模 分类: ACM TYPE 2014-08-29 22:01 95人阅读 评论(0) 收藏
#include<stdio.h> #include<stdlib.h> //快速幂算法,数论二分 long long powermod(int a,int b, int c) ...
- magic矩阵 分类: 数学 2015-07-31 22:56 2人阅读 评论(0) 收藏
魔方矩阵 魔方矩阵是有相同的行数和列数,并在每行每列.对角线上的和都相等.你能构造任何大小(除了2x2)的魔方矩阵. 1.历史 魔方又称幻方.纵横图.九宫图,最早记录于我国古代的洛书.据说 ...
- mysql快速入门 分类: B6_MYSQL 2015-04-28 14:31 284人阅读 评论(0) 收藏
debian方式: apt-get install mysql-server-5.5 mysql -u root -p redhat安装方式 一.下载并解压 $ wget http://cdn ...
- Lucene学习总结之六:Lucene打分公式的数学推导 2014-06-25 14:20 384人阅读 评论(0) 收藏
在进行Lucene的搜索过程解析之前,有必要单独的一张把Lucene score公式的推导,各部分的意义阐述一下.因为Lucene的搜索过程,很重要的一个步骤就是逐步的计算各部分的分数. Lucene ...
- JDBC之一:JDBC快速入门 分类: B1_JAVA 2014-02-19 14:49 745人阅读 评论(0) 收藏
(1)下载Oracle的JDBC驱动,一般放在$ORACLE_HOME/jdbc/lib目录,关于驱动的版本请见: http://elf8848.iteye.com/blog/811037 ...
- hilbert矩阵 分类: 数学 2015-07-31 23:03 2人阅读 评论(0) 收藏
希尔伯特矩阵 希尔伯特矩阵是一种数学变换矩阵 Hilbert matrix,矩阵的一种,其元素A(i,j)=1/(i+j-1),i,j分别为其行标和列标. 即: [1,1/2,1/3,--,1/n] ...
- Ubuntu 字体修改以及字体的相关知识 分类: ubuntu 2014-06-19 21:46 81人阅读 评论(0) 收藏
Ubuntu chrome 字体修改 打开任意一张含有输入框的网页,比如Google首页,然后右键点击"搜索框"会拉出一个菜单,我们这样选: 拼音检查选项==>语言设置==& ...
- OC基础知识总结 分类: ios学习 OC 2015-06-26 17:58 58人阅读 评论(0) 收藏
//OC: Objective-C, 面向对象的C语言 //OC与C的区别 //1.OC是C的超集, C语言的所有语法都可以在OC中使用 //2.OC是面向对象 //3.OC是一门运行时语言 //4. ...
随机推荐
- xsank的快餐 » Python simhash算法解决字符串相似问题
xsank的快餐 » Python simhash算法解决字符串相似问题 Python simhash算法解决字符串相似问题
- Jquery_Ajax文件上传
如何实现jQuery的Ajax文件上传,PHP如实文件上传.AJAX上传文件,PHP上传文件. [PHP文件上传] 在开始之前,我觉得是有必要把通WEB上传文件的原理简单说一下的.实际上,在这里不管是 ...
- python高级编程之装饰器04
from __future__ import with_statement # -*- coding: utf-8 -*- # python:2.x __author__ = 'Administrat ...
- [POJ 3734] Blocks (矩阵高速幂、组合数学)
Blocks Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3997 Accepted: 1775 Descriptio ...
- HDU 4121 Xiangqi (算是模拟吧)
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4121 题意:中国象棋对决,黑棋只有一个将,红棋有一个帅和不定个车 马 炮冰给定位置,这时当黑棋走,问你黑 ...
- Coreseek:常见的问题2
1.failed to lock XXXXX.spl档 这是当你构建的指数将是一个问题,您不必打开searchd服务关闭,既然你开searchd维修,他将建立呼叫xxx.spl临时文件,施工时的指数会 ...
- HDU 1863:畅通project(带权值的并查集)
畅通project Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total ...
- 利用Python进行数据分析——数据规整化:清理、转换、合并、重塑(七)(1)
数据分析和建模方面的大量编程工作都是用在数据准备上的:载入.清理.转换以及重塑.有时候,存放在文件或数据库中的数据并不能满足你的数据处理应用的要求.很多人都选择使用通用编程语言(如Python.Per ...
- OLEDB简介
OLE DB(OLEDB)是微软的战略性的通向不同的数据源的低级应用程序接口.OLE DB不仅包括微软资助的标准数据接口开放数据库连通性(ODBC)的结构化查询语言(SQL)能力,还具有面向其他非SQ ...
- html_day3
总结学习html的第一天 表格的结构说明 <table></table> <tr></tr> <td></td> <th& ...