部分和问题(dfs)
部分和问题
- 描述
- 给定整数a1、a2、.......an,判断是否可以从中选出若干数,使它们的和恰好为K。
- 输入
- 首先,n和k,n表示数的个数,k表示数的和。 接着一行n个数。 (1<=n<=20,保证不超int范围)
- 输出
- 如果和恰好可以为k,输出“YES”,并按输入顺序依次输出是由哪几个数的和组成,否则“NO”
- 样例输入
-
4 13
1 2 4 7 - 样例输出
-
YES
2 4 7 - 题解:这题用动态规划应该也能写,且时间效率高,用背包写了下,果断不对,思路有问题;
#include<stdio.h>
#include<stack>
using namespace std;
int m[],n,k;
stack<int>num;
bool dfs(int temp,int i){
if(i==n)return temp==k;
if(dfs(temp,i+))return true;
if(dfs(temp+m[i],i+)){
num.push(m[i]);
return true;
}
return false;
}
int main(){
while(~scanf("%d%d",&n,&k)){
for(int i=;i<n;++i)scanf("%d",&m[i]);
if(dfs(,)){
printf("YES\n");
for(int i=;!num.empty();i++){
if(i)printf(" ");
printf("%d",num.top());
num.pop();
}
puts("");
}
else printf("NO\n");
}
return ;
}
方法二:
#include<stdio.h>
const int MAXN=;
int m[MAXN],anser[MAXN];
int ans,k,n;
void dfs(int top,int num,int sum){
if(sum==k){
ans=;
puts("YES");
for(int i=;i<num;i++){
if(i)printf(" ");
printf("%d",anser[i]);
}
puts("");
return;
}
if(num>=n||top>=n)return;
for(int i=top;i<n;i++){
if(ans)return;
anser[num]=m[i];
dfs(i+,num+,sum+m[i]);
}
}
int main(){
while(~scanf("%d%d",&n,&k)){
ans=;
for(int i=;i<n;i++)scanf("%d",m+i);
dfs(,,);
if(!ans)puts("NO");
}
return ;
}
部分和问题(dfs)的更多相关文章
- DFS、BFS和Backtracking模板
区别与联系 区别 DFS多用于连通性问题因为其运行思想与人脑的思维很相似,故解决连通性问题更自然,采用递归,编写简便(但我个人不这样觉得...) DFS的常数时间开销会较少.所以对于一些能用DFS就能 ...
- UVA11212-Editing a Book(迭代加深搜索)
Problem UVA11212-Editing a Book Accept:572 Submit:4428 Time Limit: 10000 mSec Problem Description ...
- nyoj 1058部分和问题(DFS)
部分和问题 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 给定整数a1.a2........an,判断是否可以从中选出若干数,使它们的和恰好为K. 输入 首先, ...
- 深度优先搜索(DFS)——部分和问题
对于深度优先搜索,这里有篇写的不错的博客:DFS算法介绍 .总得来说是从某个状态开始,不断的转移状态知道无法转移,然后回到前一步的状态.如此不断的重复一直到找到最终的解.根据这个特点,常常会用到递归. ...
- 【子集或者DFS】部分和问题
题目: 给定整数序列a1,a2,...,an,判断是否可以从中选出若干数,使它们的和恰好为k.1≤n≤20 -108≤ai≤108 -108≤k≤108 输入: n=4 a={1,2,4,7} ...
- NYOJ 1058 部分和问题 【DFS】
部分和问题 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描写叙述 给定整数a1.a2........an,推断能否够从中选出若干数.使它们的和恰好为K. 输入 首先,n和k ...
- 部分和问题 南阳acm1058(递归+dfs)
部分和问题 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 给定整数a1.a2........an,判断是否可以从中选出若干数,使它们的和恰好为K. 输入 首先, ...
- nyist oj 1058 部分和问题 (DFS搜索)
部分和问题 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描写叙述 给定整数a1.a2........an.推断能否够从中选出若干数,使它们的和恰好为K. 输入 首先,n和k ...
- 部分和问题(dfs)
部分和问题 描述 给定整数a1.a2........an,判断是否可以从中选出若干数,使它们的和恰好为K. 输入 首先,n和k,n表示数的个数,k表示数的和.接着一行n个数.(1<=n<= ...
随机推荐
- qt model/view 架构基础介绍之QTreeWidget
# -*- coding: utf-8 -*- # python:2.x #说明:QTreeWidget用于展示树型结构,也就是层次结构同前面说的 QListWidget 类似,这个类需要同另外一个辅 ...
- 原生AJAX如何异步提交数据?
AJAX概述 AJAX:Asynchronous Javascript And XML,异步的JS和XML.2001,Google为了改进搜索的用户体验,提出了GoogleSugguest效果,正式提 ...
- shadow projection
1.概述 shadow projection,又可成为planar shadow, 这是一种非常简单的绘制阴影的方法. 主要应用的应用场景:物体在平面投射阴影. 主要思想:把阴影看作是物体在平面上的投 ...
- Ubuntu14.04配置cuda-convnet
转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/39722999 在上一个链接中,我配置了cuda,有强大的GPU,自然不能暴殄天物,让资源 ...
- openssl ans.1编码规则分析及证书密钥编码方式
1 数据编码格式 openssl的数据编码规则是基于ans.1的,ans.1是什么 ? 先上高大上的解释 ASN.1(Abstract Syntax Notation One), 是一种结构化的描述语 ...
- 1.jdk、Tomcat、solr的安装和配置
1.jdk安装和配置 1)根据电脑类型,到官网下载相应的jdk版本 2)双击jdk-8u5-windows-x64.exe安装包,一直点下一步就可以了,注意记住jdk和jre的安装目录. 3)环境变量 ...
- 0119——UIImageView的一些属性 和 简单动画实现
1.contentMode view.contentMode = UIViewContentModeScaleAspectFill; 2.是否实现触摸 3.简单实现动画 图片的名字为campFire0 ...
- C学习笔记 - 指针
指针与数组 ,,,,}; int *p; p = a; printf("*a = %d\n",*a); printf("*p = %d\n",*p); prin ...
- Struts2体系结构图以及详解
Strut2的体系结构如图所示: 一个请求在Struts2框架中的处理大概分为以下几个步骤: 1.客户端初始化一个指向Servlet容器(例如Tomcat)的请求: 2.这个请求经过一系列的过滤器(F ...
- (原)下载pubFig的python代码
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/5715305.html pubFig数据库网址: http://www.cs.columbia.edu/ ...