题面

传送门

分析

由于一个点可以经过多次,显然每个环都会被走一遍。

考虑缩点,将每个强连通分量缩成一个点,点权为联通分量上的所有点之和

缩点后的图是一个有向无环图(DAG)

可拓扑排序,按照拓扑序进行DP

子状态:\(dp[i]\)表示以i结尾的路径的最大权值和

状态转移方程 \(dp[y]=max(dp[y],dp[x]+val[y]) ( (x,y) \in E)\)

最终的答案为max(dp[belong[u]]),其中u是酒吧编号,belong[u]表示酒吧所在的联通分量

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<stack>
#include<map>
#define maxn 500005
using namespace std;
struct edge{
int u;
int v;
edge(){ }
edge(int from,int to){
u=from;
v=to;
}
friend bool operator < (edge a,edge b){
if(a.u==b.u) return a.v<b.v;
else return a.u<b.u;
}
};
map<edge,int>used;
int n,m,st,p;
vector<int>G[maxn];
vector<int>D[maxn];
int money[maxn];
int tim=0;
int cnt=0;
int dfn[maxn];
int low[maxn];
int ins[maxn];
int belong[maxn];
long long dp[maxn],val[maxn];
stack<int>s;
void tarjan(int x){
s.push(x);
ins[x]=1;
dfn[x]=low[x]=++tim;
int t=G[x].size();
for(int i=0;i<t;i++){
int y=G[x][i];
if(!dfn[y]){
tarjan(y);
low[x]=min(low[x],low[y]);
}else if(ins[y]){
low[x]=min(low[x],dfn[y]);
}
}
if(low[x]==dfn[x]){
cnt++;
int y;
do{
y=s.top();
s.pop();
ins[y]=0;
val[cnt]+=money[y];
belong[y]=cnt;
}while(x!=y);
}
} int in[maxn];
int out[maxn];
void graph_to_dag(){
for(int i=1;i<=n;i++){
if(!dfn[i]) tarjan(i);
}
for(int i=1;i<=n;i++){
int t=G[i].size();
for(int j=0;j<t;j++){
int k=G[i][j];
if(belong[i]!=belong[k]){
if(used.count(edge(belong[i],belong[k]))) continue;
used[edge(belong[i],belong[k])]=1;
D[belong[i]].push_back(belong[k]);
in[belong[k]]++;
}
}
}
} int is_ok[maxn];
void topo_sort(int s){
queue<int>q;
is_ok[s]=1;
for(int i=1;i<=cnt;i++){
if(in[i]==0){
q.push(i);
}
}
dp[s]=val[s];
while(!q.empty()){
int x=q.front();
q.pop();
int t=D[x].size();
for(int i=0;i<t;i++){
int y=D[x][i];
in[y]--;
if(is_ok[x]){
dp[y]=max(dp[y],dp[x]+val[y]);
is_ok[y]=1;
}
if(in[y]==0) q.push(y);
}
}
} int main(){
int u,v;
scanf("%d %d",&n,&m);
for(int i=1;i<=m;i++){
scanf("%d %d",&u,&v);
G[u].push_back(v);
}
for(int i=1;i<=n;i++){
scanf("%d",&money[i]);
}
graph_to_dag();
scanf("%d %d",&st,&p);
topo_sort(belong[st]);
long long ans=0;
for(int i=1;i<=p;i++){
scanf("%d",&u);
ans=max(ans,dp[belong[u]]);
}
printf("%lld\n",ans);
}

BZOJ 1179 (Tarjan缩点+DP)的更多相关文章

  1. 硬币问题 tarjan缩点+DP 莫涛

    2013-09-15 20:04 题目描述 有这样一个游戏,桌面上摆了N枚硬币,分别标号1-N,每枚硬币有一个分数C[i]与一个后继硬币T[i].作为游戏参与者的你,可以购买一个名为mlj的小机器人, ...

  2. 【Codeforces】894E.Ralph and Mushrooms Tarjan缩点+DP

    题意 给定$n$个点$m$条边有向图及边权$w$,第$i$次经过一条边边权为$w-1-2.-..-i$,$w\ge 0$给定起点$s$问从起点出发最多能够得到权和,某条边可重复经过 有向图能够重复经过 ...

  3. Libre OJ 2255 (线段树优化建图+Tarjan缩点+DP)

    题面 传送门 分析 主体思路:若x能引爆y,从x向y连一条有向边,最后的答案就是从x出发能够到达的点的个数 首先我们发现一个炸弹可以波及到的范围一定是坐标轴上的一段连续区间 我们可以用二分查找求出炸弹 ...

  4. NOIP2009最优贸易[spfa变形|tarjan 缩点 DP]

    题目描述 C 国有 n 个大城市和 m 条道路,每条道路连接这 n 个城市中的某两个城市.任意两个 城市之间最多只有一条道路直接相连.这 m 条道路中有一部分为单向通行的道路,一部分 为双向通行的道路 ...

  5. bzoj 1179 tarjan+spfa

    首先我们可以将这个图缩成DAG,那么问题中的路线就可以简化为DAG中的一条链,那么我们直接做一遍spfa就好了. 反思:开始写的bfs,结果bfs的时候没有更新最大值,而是直接赋的值,后来发现不能写b ...

  6. BZOJ 1179 抢掠计划atm (缩点+有向无环图DP)

    手动博客搬家: 本文发表于20170716 10:58:18, 原地址https://blog.csdn.net/suncongbo/article/details/81061601 https:// ...

  7. 【BZOJ-1924】所驼门王的宝藏 Tarjan缩点(+拓扑排序) + 拓扑图DP

    1924: [Sdoi2010]所驼门王的宝藏 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 787  Solved: 318[Submit][Stat ...

  8. BZOJ 1051 受欢迎的牛(Tarjan缩点)

    1051: [HAOI2006]受欢迎的牛 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 4573  Solved: 2428 [Submit][S ...

  9. BZOJ 1179: [Apio2009]Atm( tarjan + 最短路 )

    对于一个强连通分量, 一定是整个走或者不走, 所以tarjan缩点然后跑dijkstra. ------------------------------------------------------ ...

随机推荐

  1. MyEclipse使用教程:使用Workbench和Perspectives

    [MyEclipse CI 2019.4.0安装包下载] workbench指的是加载IDE时看到的内容,它通常包含一个perspective,这是相关视图和编辑器的布局.您可以根据正在进行开发的类型 ...

  2. C++ GUI Qt4学习笔记03

    C++ GUI Qt4学习笔记03   qtc++spreadsheet文档工具resources 本章介绍创建Spreadsheet应用程序的主窗口 1.子类化QMainWindow 通过子类化QM ...

  3. Docker(三):Docker入门教程-CentOS Docker 安装

    CentOS Docker 安装 Docker支持以下的CentOS版本: CentOS 7 (64-bit) CentOS 6.5 (64-bit) 或更高的版本 前提条件 目前,CentOS 仅发 ...

  4. HBase过滤器(转载)

    HBase为筛选数据提供了一组过滤器,通过这个过滤器可以在HBase中的数据的多个维度(行,列,数据版本)上进行对数据的筛选操作,也就是说过滤器最终能够筛选的数据能够细化到具体的一个存储单元格上(由行 ...

  5. shimo

    shimo破解需要同意安装允许各个端安装

  6. 利用Pandas和matplotlib分析我爱我家房租区间频率

    前几天利用python爬取了我爱我家的租房的一些数据,就想着能不能对房租进行一波分析,于是通过书籍和博客等查阅了相关资料,进行了房租的区间分析.不得不说,用python做区间分析比我之前用sql关键字 ...

  7. linux运维、架构之路-HAProxy反向代理

    一.HAProxy介绍          专业反向代理,支持双机热备支持虚拟主机,配置简单,拥有非常不错的服务器健康检查功能,当其代理的后端节点出现故障, HAProxy会自动将该服务器摘除,故障恢复 ...

  8. 在 Postman 中报错:Self-signed SSL certificates are being blocked 的分析与解决

    http://www.shuijingwanwq.com/2019/02/18/3171/

  9. 判断Java对象存活的算法、垃圾回收算法

    判断Java对象存活的算法 一.引用计数算法 给对象添加一个引用计数器,每当一个地方引用它的时候就将计数器加1,当引用失效的时候就将计数器减1,任何时刻计数器为0的对象都不可再被使用.这种算法虽然简单 ...

  10. PHP文件的上传和下载

    1.使用PHP的创始人 Rasmus Lerdorf 写的APC扩展模块来实现(http://pecl.php.net/package/apc) APC实现方法: 安装APC,参照官方文档安装,可以使 ...