机器学习ROC图解读
1. 分类器评估指标
对于二分类问题,可将样例根据其真实类别和分类器预测类别划分为:
真正例(True Positive,TP):真实类别为正例,预测类别为正例。
假正例(False Positive,FP):真实类别为负例,预测类别为正例。
假负例(False Negative,FN):真实类别为正例,预测类别为负例。
真负例(True Negative,TN):真实类别为负例,预测类别为负例。
2. 精确度,召回率,真阳性,假阳性
精确度( precision ):TP / ( TP+FP ) = TP / P
召回率(recall):TP / (TP + FN ) = TP / T
真阳性率(True positive rate):TPR = TP / ( TP+FN ) = TP / T (敏感性 sensitivity)
假阳性率(False positive rate):FPR = FP / ( FP + TN ) = FP / F (特异性:specificity)
准确率(Accuracy):Acc = ( TP + TN ) / ( P +N )
F-measure:2*recall*precision / ( recall + precision )
ROC曲线:FPR为横坐标,TPR为纵坐标
PR曲线:recall为横坐标,precision 为纵坐标

3. ROC图


- 纵坐标是true positive rate(TPR) = TP / (TP+FN=P) (分母是横行的合计)直观解释:实际是1中,猜对多少
- 横坐标是false positive rate(FPR) = FP / (FP+TN=N) 直观解释:实际是0中,错猜多少
4. AUC
AUC(Area Under Curve),就是这条ROC曲线下方的面积了。越接近1表示分类器越好。 但是,直接计算AUC很麻烦,但由于其跟Wilcoxon-Mann-Witney Test等价,所以可以用这个测试的方法来计算AUC。Wilcoxon-Mann-Witney Test指的是,任意给一个正类样本和一个负类样本,正类样本的score有多大的概率大于负类样本的score(score指分类器的打分)。
随着FPR的上升,ROC曲线从原点(0, 0)出发,最终都会落到(1, 1)点。ROC便是其右下方的曲线面积。下图展现了三种AUC的值:

AUC = 1,是完美分类器,采用这个预测模型时,不管设定什么阈值都能得出完美预测。绝大多数预测的场合,不存在完美分类器。
0.5 < AUC < 1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。
AUC = 0.5,跟随机猜测一样(例:丢铜板),模型没有预测价值。
AUC < 0.5,比随机猜测还差;但只要总是反预测而行,就优于随机猜测,因此不存在AUC < 0.5的情况
AUC对于每一个做机器学习的人来说一定不陌生,它是衡量二分类模型优劣的一种评价指标,表示正例排在负例前面的概率。其他评价指标有精确度、准确率、召回率,而AUC比这三者更为常用。因为一般在分类模型中,预测结果都是以概率的形式表现,如果要计算准确率,通常都会手动设置一个阈值来将对应的概率转化成类别,这个阈值也就很大程度上影响了模型准确率的计算。
我们不妨举一个极端的例子:一个二类分类问题一共10个样本,其中9个样本为正例,1个样本为负例,在全部判正的情况下准确率将高达90%,而这并不是我们希望的结果,尤其是在这个负例样本得分还是最高的情况下,模型的性能本应极差,从准确率上看却适得其反。而AUC能很好描述模型整体性能的高低。这种情况下,模型的AUC值将等于0(当然,通过取反可以解决小于50%的情况,不过这是另一回事了)。
机器学习ROC图解读的更多相关文章
- 图机器学习(GML)&图神经网络(GNN)原理和代码实现(前置学习系列二)
项目链接:https://aistudio.baidu.com/aistudio/projectdetail/4990947?contributionType=1 欢迎fork欢迎三连!文章篇幅有限, ...
- 两张图解读Java异常与断言
两张图解读Java异常与断言 --转载请注明出处:coder-pig 本节引言: 前天公布的"七张图解析Java多线程&quo ...
- Agile1001社区10月份活动:一张图解读企业级产品思维
活动信息 主题:一张图解读企业级产品思维 地点:北京市海淀区苏州街3号大恒科技大厦南座4层 时间: 2017-10-15 14:00 - 17:00 报名链接:http://www.hdb.com/p ...
- (转)Linux 系统性能分析工具图解读(一、二)
Linux 系统性能分析工具图解读(一.二) 原文:http://oilbeater.com/linux/2014/09/08/linux-performance-tools.html 最近看了 Br ...
- scikit-learn画ROC图
1.使用sklearn库和matplotlib.pyplot库 import sklearn import matplotlib.pyplot as plt 2.准备绘图函数的传入参数1.预测的概率值 ...
- Java之24种设计模式-UML-模型图解读
Design Patterns 策略模式: 观察者模式: 经典单例模式: private static class AuthenticationHolder { private static fina ...
- Dlib机器学习指南图翻译
原图地址 http://dlib.net/ml_guide.svg 翻译的文件 http://files.cnblogs.com/files/oloroso/ml_guide.zip
- UML系列,使用UML实现GOF Design patterns,常用模式类图解读
1.单例:Singleton, DirectedAssociation
- 模型监控指标- 混淆矩阵、ROC曲线,AUC值,KS曲线以及KS值、PSI值,Lift图,Gain图,KT值,迁移矩阵
1. 混淆矩阵 确定截断点后,评价学习器性能 假设训练之初以及预测后,一个样本是正例还是反例是已经确定的,这个时候,样本应该有两个类别值,一个是真实的0/1,一个是预测的0/1 TP(实际为正预测为正 ...
随机推荐
- 包、time、datetime、hashlib和hmac、request、re
目录 包 包的特点 time模块 datetime模块 hashlib模块和hmac模块 hmac密钥(加盐) typing模块 request模块 正则模块 以下必须得记住 哪些做了解 包 包,这里 ...
- Linux学习-NFS服务
一.NFS服务相关介绍 1.NFS简介 NFS (Network File System) 网络文件系统,基于内核的文件系统.Sun公司开发,通过使用NFS,用户和程序可以像访问本地文件一样访问远端系 ...
- C#与java的区别(继承,接口实现,指针,编译后形式,异常处理几个方面比较区别)
- Linux分屏操作
需要安装工具tmux (1)安装工具 在ubuntu系统中使用sudo apt-get install tmux安装tmux工具 (2)使用工具 1,输入命令tmux使用工具 2,上下分屏:ctrl ...
- Bugku 杂项 隐写
隐写 下载后打开压缩包发现是一张图片 用winhex打开 图中红色框内是PNG的PE头 在IHDR后面的八个字节(黄色框部分)为该图片的长度.宽度信息 将黄色框内最后一个字节由A4改为F4后另存为图片 ...
- CopyOnWrite 个人理解以及应用
缘由 最近在看<Redis 设计与实现>,看到Redis的执行bgsave生成dump.rdb是根据CopyOnWrite的 之前也不是很懂为啥要有CopyOnWrite这个东西 翻看文章 ...
- warp(图像仿射变换)
仿射变换是一种二维坐标(x,y)到二维坐标(u,v)的线性变换. 对应的齐次坐标矩阵表示形式为: 仿射变换特点: 直线经仿射变换后依然为直线: ’直线之间的相对位置关系保持不变,平行线经仿射变换后依然 ...
- 走进JavaWeb技术世界14:Mybatis入门
本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到我的仓库里查看 https://github.com/h2pl/Java-Tutorial 喜欢的话麻烦点下 ...
- 简单三步同步你的 VSCode 用户配置
https://www.cnblogs.com/knight-errant/p/10444777.html 设备重装,换设备,VSCode 又要重新配置了?不不不,简单三步,让你的 VSCode 配置 ...
- 阶段1 语言基础+高级_1-3-Java语言高级_04-集合_01 Collection集合_4_Iterator接口介绍
collection集合中是没有索引的,不能使用普通的循环来便利它. 也是在util的包中 先判断集合中有没有元素 有元素就取出来,用next方法 使用接口来接受一个实现类,这就是多态