蚁群算法解决TSP问题
代码实现





运行结果及参数展示
alpha=1
beta=5
rho=0.1


alpha=1
beta=1
rho=0.1


alpha=0.5
beta=1
rho=0.1


概念
蚁群算法(AG)是一种模拟蚂蚁觅食行为的模拟优化算法,它是由意大利学者Dorigo M等人于1991年首先提出,并首先使用在解决TSP(旅行商问题)上。之后,又系统研究了蚁群算法的基本原理和数学模型.
蚁群算法的基本原理:
1、蚂蚁在路径上释放信息素。
2、碰到还没走过的路口,就随机挑选一条路走。同时,释放与路径长度有关的信息素。
3、信息素浓度与路径长度成反比。后来的蚂蚁再次碰到该路口时,就选择信息素浓度较高路径。
4、最优路径上的信息素浓度越来越大。
5、最终蚁群找到最优寻食路径。

公式一
从公式中可以看出信息素因子为信息素浓度的指数,启发函数因子为启发函数的指数,这样便很好理解这两个参数所起到的作用了,分别决定了信息素浓度以及转移期望对于蚂蚁k从城市i转移到城市j的可能性的贡献程度。
公式二:
这个公式反映了信息素浓度的迭代更新规律,可以看出,所有蚂蚁遍历完一次所有城市后,当前信息素浓度由两部分组成,第一部分即上次所有蚂蚁遍历完所有城市后路径上信息素的残留,第二部分为本次所有蚂蚁遍历完所有城市后每条路径上的信息素的新增量。
公式三:
公式三反映了每只蚂蚁对于自己经过的城市之间路径上信息素浓度的贡献量,可以看出,其经历的路程越长,则对于沿途上信息素浓度的贡献量也就越低,如果尽力的路程越短,则对于沿途上信息素浓度的贡献量也就越高
实验总结
(1)蚁群算法是一种模拟生物界蚂蚁觅食过程的智能搜索算法,首先应用于组合优化问题,并取得了较好的结果。实验仿真结果表明:蚁群算法合理地利用了信息素,在搜索时间和解的质量之间取得了一个较好的平衡,该算法是一种有效的算法
(2)alpha值越大,蚂蚁选择之前走过的路径可能性就越大,搜索路径的随机性就减弱,alpha越小,蚁群搜索范围就会减少,容易陷入局部最优
(3)beta值越大,蚁群就越容易选择局部较短路径,这时算法的收敛速度是加快了,但是随机性不高,容易得到局部的相对最优
(4)rho过小时,在各路径上的残留的信息素过多,导致无效的路径继续被搜索,影响到算法的收敛速率;
rho过大时,无效的路径虽然可以被排除搜索,但是不能保证也会被放弃搜索,影响到最优值的搜索
蚁群算法解决TSP问题的更多相关文章
- [matlab] 8.蚁群算法解决TSP问题
城市坐标数据下载 密码:07d5 求遍历这52座城市后最后回到最初城市的最短距离 %% 第9章 蚁群算法及MATLAB实现——TSP问题 % 程序9-1 %% 数据准备 % 清空环境变量 clear ...
- 蚁群算法求解TSP问题
一.蚁群算法简介 蚁群算法是对自然界蚂蚁的寻径方式进行模似而得出的一种仿生算法:蚂蚁在运动过程中,能够在它所经过的路径上留下信息素(pheromone)的物质进行信息传递,而且蚂蚁在运动过程中能够感知 ...
- 利用HTML5 Canvas和Javascript实现的蚁群算法求解TSP问题演示
HTML5提供了Canvas对象,为画图应用提供了便利. Javascript可执行于浏览器中, 而不须要安装特定的编译器: 基于HTML5和Javascript语言, 可随时编写应用, 为算法測试带 ...
- ACS蚁群算法求解对称TSP旅行商问题的JavaScript实现
本来以为在了解蚁群算法的基础上实现这道奇怪的算法题并不难,结果实际上大相径庭啊.做了近三天时间,才改成现在这能勉强拿的出手的模样.由于公式都是图片,暂且以截图代替那部分内容吧,mark一记. 1 蚁群 ...
- 蚁群算法(Java)tsp问题
1.理论概述 1.1.TSP问题 旅行商问题,即TSP问题(旅行推销员问题.货郎担问题),是数学领域中著名问题之一.假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只 ...
- 蚁群算法MATLAB解TSP问题
Excel表exp12_3_1.xls中数据为: clc clear all [xdata,textdata]=xlsread('exp12_3_1.xls'); %加载20个城市的数据,数据按照表格 ...
- 蚁群算法简介(part 1:蚁群算法之绪论)
群算法是Marco Dorigo在1992年提出的一种优化算法,该算法受到蚂蚁搜索食物时对路径的选择策略的启示.蚁群算法作为群体智能算法的一种利用分布式的种群搜索策略来寻找目标函数的最优解.蚁群算法与 ...
- 蚁群算法简介(part3: 蚁群算法之更新信息素)
信息素的局部更新策略 每只蚂蚁在构造出一条从起点到终点的路径后,蚁群算法还要求根据路径的总长度来更新这条路径所包含的每条边上信息素的浓度(在旅行商问题中每座城市是图中的一个节点,城市两两间有一条边 ...
- 蚁群算法简介(part2: 蚁群算法之构造路径)
蚁群算法主要可以分为以下几个步骤:首先,蚁群中的每只蚂蚁都根据地面上信息素浓度的大小找出一条从原点通向终点的遍历所有城市一次的路径(构造路径):然后每只蚂蚁沿着自己刚刚找到的路径回溯,在路径经过的各个 ...
随机推荐
- canvas实现圆角图片 (处理原图是长方形或正方形)
/** * 生成图片的缩略图 * @param {[type]} img 图片(img)对象或地址 * @param {[type]} width 缩略图宽 * @param {[type]} hei ...
- MySql截取手机号
IF(IFNULL(phone_number,'')='','',CONCAT(LEFT(phone_number,3),'****',RIGHT(phone_number,4))) phone_n ...
- Docker(2)--Centos7 上安装部署
Centos7 上安装docker Docker从1.13版本之后采用时间线的方式作为版本号,分为社区版CE和企业版EE. 社区版是免费提供给个人开发者和小型团体使用的,企业版会提供额外的收费服务,比 ...
- 2019JAVA最新课程-React从入门到实战(新)
1.准备工作 可以在yunp.top网站看webpack,node/npm,cnpm的相关使用视频教程 react有两种使用方式,一是在现有网站中添加:二是创建一个全新的 官网创建全新一个react ...
- [CF1093G]Multidimensional Queries 题解
前言 DennyQi太巨了! 定义一个点\(a\),\(a_x\)表示\(a\)在第\(x\)维空间上的坐标值 题解 这题的思路珂以说非常巧妙(原谅我又用了这个"珂"), 我们知道 ...
- SpringBoot2.2版本配置绑定
具体可以查看这篇:https://www.cnblogs.com/dalianpai/p/11772382.html 原始的 /** * @author WGR * @create 2019/12/ ...
- D. Print a 1337-string...
D. Print a 1337-string... 输出一个字符串 里面包含n个子序列 1337 #include<bits/stdc++.h> using namespace std; ...
- Spring Data Jpa (三)定义查询方法
本章详细讲解如何利用方法名定义查询方法(Defining Query Methods) (1)定义查询方法的配置方法 由于Spring JPA Repository的实现原理是采用动态代理的机制,所以 ...
- Hashtable 和 HashMap 的区别是:
HashMap 是内部基于哈希表实现,该类继承AbstractMap,实现Map接口 Hashtable 线程安全的,而 HashMap 是线程不安全的 Properties 类 继承了 Hashta ...
- 大数据笔记(二十八)——执行Spark任务、开发Spark WordCount程序
一.执行Spark任务: 客户端 1.Spark Submit工具:提交Spark的任务(jar文件) (*)spark提供的用于提交Spark任务工具 (*)example:/root/traini ...