每次求出最长链更新答案后要将最长链上的边权改为-1

写的贼长 还可以优化...

 /*Huyyt*/
#include<bits/stdc++.h>
#define mem(a,b) memset(a,b,sizeof(a))
#define pb push_back
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
const int MAXN = 1e5 + , MAXM = 2e5 + ;
int to[MAXM << ], nxt[MAXM << ], Head[MAXN], ed = ;
int value[MAXM << ];
inline void addedge(int u, int v, int val)
{
to[++ed] = v;
nxt[ed] = Head[u];
value[ed] = val;
Head[u] = ed;
}
int d[MAXN];
void dfs(int x, int pre)
{
for (int v, i = Head[x]; i; i = nxt[i])
{
v = to[i];
if (v == pre)
{
continue;
}
d[v] = d[x] + value[i];
dfs(v, x);
}
}
void change(int x)
{
for (int v, i = Head[x]; i; i = nxt[i])
{
v = to[i];
if (d[v] == d[x] - )
{
value[i] = value[i ^ ] = -;
change(v);
}
}
}
int s, t, dmx = -;
int ans2 = , vis[MAXN], dpd[MAXN];
void dp(int x)
{
vis[x] = ;
for (int v, i = Head[x]; i; i = nxt[i])
{
v = to[i];
if (vis[v])
{
continue;
}
dp(v);
ans2 = max(ans2, dpd[x] + dpd[v] + value[i]);
dpd[x] = max(dpd[x], dpd[v] + value[i]);
}
}
int main()
{
int anser;
int n, k;
int u, v;
scanf("%d %d", &n, &k);
for (int i = ; i < n; i++)
{
scanf("%d %d", &u, &v);
addedge(u, v, ), addedge(v, u, );
}
anser = * (n - );
d[] = ;
dfs(, );
for (int i = ; i <= n; i++)
{
if (d[i] > dmx)
{
dmx = d[i];
s = i;
}
}
d[s] = ;
dfs(s, );
dmx = -;
for (int i = ; i <= n; i++)
{
if (d[i] > dmx)
{
dmx = d[i];
t = i;
}
}
anser -= d[t] - ;
if (k == )
{
printf("%d\n", anser);
return ;
}
change(t);
dp();
anser -= ans2 - ;
printf("%d\n", anser);
return ;
}

//BZOJ1912

求树直径dp

 void dp(int x)
{
vis[x] = ;
for (int v, i = Head[x]; i; i = nxt[i])
{
v = to[i];
if (vis[v])
{
continue;
}
dp(v);
ans2 = max(ans2, dpd[x] + dpd[v] + value[i]);
dpd[x] = max(dpd[x], dpd[v] + value[i]);
}
}

其实这个dp的作用是先把无根树转化为有根树 再求每个点子树中的最长链和次长链(如果有次长链的话)

则树的直径有两种情况

1.是一个节点的最长链

2.是一个节点的次长链+最长链

我们首先记录直径取最长是在哪个节点 然后在每个节点我们都要记录 次长链是那条边拓展出去和最长链是那条边拓展出去

因为一个节点的最长链和次长链必定是一个边加下一个节点的最长链

这样就可以一个dfs搞定

 /*Huyyt*/
#include<bits/stdc++.h>
#define mem(a,b) memset(a,b,sizeof(a))
#define pb push_back
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
const int MAXN = 1e5 + , MAXM = 1e5 + ;
int to[MAXM << ], nxt[MAXM << ], Head[MAXN], ed = ;
int value[MAXM << ];
inline void addedge(int u, int v, int val)
{
to[++ed] = v;
nxt[ed] = Head[u];
value[ed] = val;
Head[u] = ed;
}
int mxlen[MAXN], mxlen2[MAXN];
int ansdis = ; //直径大小
int s, t;
int dfs(int x, int pre)
{
int mx1 = , mx2 = ; //当前节点的最长链和次长链长度
int now;
for (int v, i = Head[x]; i; i = nxt[i])
{
v = to[i];
if (v == pre)
{
continue;
}
now = dfs(v, x) + value[i];
if (now > mx1)
{
mx2 = mx1;
mxlen2[x] = mxlen[x];
mx1 = now;
mxlen[x] = i; //更新最长链 原最长链变为次长链
}
else if (now > mx2)
{
mx2 = now;
mxlen2[x] = i; //更新次长链
}
}
if (mx1 + mx2 > ansdis)
{
ansdis = mx1 + mx2;
s = x;
}
return mx1;//返回每个节点的最长链大小
}
int main()
{
int anser;
int n, k;
int u, v;
scanf("%d %d", &n, &k);
for (int i = ; i < n; i++)
{
scanf("%d %d", &u, &v);
addedge(u, v, ), addedge(v, u, );
}
anser = * (n - );
dfs(, );
anser -= ansdis - ;
if (k == )
{
printf("%d\n", anser);
return ;
}
ansdis = ;
for (int i = mxlen[s]; i; i = mxlen[to[i]]) //最长链上的边重置为-1
{
value[i] = value[i ^ ] = -;
}
for (int i = mxlen2[s]; i; i = mxlen[to[i]]) //次长链上的边重置为-1
{
value[i] = value[i ^ ] = -;
}
dfs(, );
anser -= ansdis - ;
printf("%d\n", anser);
return ;
}

BZOJ1912 最长链树形DP的更多相关文章

  1. $Loj10155$ 数字转换(求树的最长链) 树形$DP$

    loj Description 如果一个数x的/约数和/y(不包括他本身)比他本身小,那么x可以变成y,y 也可以变成x.限定所有数字变换在不超过n的正整数范围内进行,求不断进行数字变换且不出现重复数 ...

  2. 中南大学oj 1317 Find the max Link 边权可以为负的树上最长路 树形dp 不能两遍dfs

    http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1317经典问题:树上最长路,边权可以为负值的,树形dp,不能用两边dfs.反例:5 41 2 22 ...

  3. 【CF1009F】 Dominant Indices (长链剖分+DP)

    题目链接 \(O(n^2)\)的\(DP\)很容易想,\(f[u][i]\)表示在\(u\)的子树中距离\(u\)为\(i\)的点的个数,则\(f[u][i]=\sum f[v][i-1]\) 长链剖 ...

  4. hdu 6501 transaction transaction transaction 最长路/树形DP/网络流

    最长路: 设置一个虚拟起点和虚拟终点,每个点与起点间一条负边,值为这个点书的价值的相反数(代表买书花钱),每个点与终点连一条正边,值为这个点的书的价格(代表卖书赚钱). 然后按照图中给的边建无向边,权 ...

  5. 2019.01.08 bzoj4543: [POI2014]Hotel加强版(长链剖分+dp)

    传送门 代码: 长链剖分好题. 题意:给你一棵树,问树上选三个互不相同的节点,使得这个三个点两两之间距离相等的方案数. 思路: 先考虑dpdpdp. fi,jf_{i,j}fi,j​表示iii子树中离 ...

  6. 牛客网 桂林电子科技大学第三届ACM程序设计竞赛 G.路径-带条件的树的直径变形-边权最大,边数偶数的树上的最长路径-树形dp

    链接:https://ac.nowcoder.com/acm/contest/558/G 来源:牛客网 路径 小猫在研究树. 小猫在研究路径. 给定一棵N个点的树,每条边有边权,请你求出最长的一条路径 ...

  7. HihoCoder1050 树中的最长路 树形DP第三题(找不到对象)

    题意:求出的树中距离最远的两个结点之间相隔的距离. 水题一道,以前只会用路的直径来解. 代码如下: #include<cstdio> #include<cstdlib> #in ...

  8. 【BZOJ4543】[POI2014]Hotel加强版 长链剖分+DP

    [BZOJ4543][POI2014]Hotel加强版 Description 同OJ3522数据范围:n<=100000 Sample Input 7 1 2 5 7 2 5 2 3 5 6 ...

  9. P7581-「RdOI R2」路径权值【长链剖分,dp】

    正题 题目链接:https://www.luogu.com.cn/problem/P7581 题目大意 给出\(n\)个点的有边权有根树,\(m\)次询问一个节点\(x\)的所有\(k\)级儿子两两之 ...

随机推荐

  1. Class文件内容解析

    一.概述 任何一个Class文件都对应唯一一个类或接口的定义信息,但是不是所有的类或接口都得定义在文件中(它们也可以通过类加载器直接生成). Class文件是一组以8位字节为基础单位的二进制流,各个数 ...

  2. 组件推荐Forloop.HtmlHelpers 用来实现MVC的js加载顺序

    最近在开发的时候遇到js加载顺序的问题,layui在底部声明了js,但是我想在页面其他地方使用分布视图,分布视图内有自己的js逻辑,发现不能执行,一看就发现,这里的js应该加在layui后面执行才能有 ...

  3. LeetCode.1071-字符串最大公约数(Greatest Common Divisor of Strings)

    这是小川的第391次更新,第421篇原创 01 看题和准备 今天介绍的是LeetCode算法题中Easy级别的第253题(顺位题号是1071).对于字符串S和T,当且仅当S = T + ... + T ...

  4. 【AMAD】transitions -- 一个python实现的轻量级,面向对象的有限状态机

    简介 个人评分 简介 Transitions1是使用python实现的有限状态机2. 而有限状态机是实现经典模式 -- 状态模式3的前提. 这个库的API相当优雅,简洁. 另外博客园有人发布博客4介绍 ...

  5. postman Tests断言

    摘要:关于postman的断言方法很多,在网上随便搜寻下,能搜出一大推,什么牛鬼蛇神都有,让人眼花缭乱..甚至在应用时出现错误.Test断言都是根据js规则来写的,对于我这种不懂js语言的来说确实不友 ...

  6. SolidWorks学习笔记2草图

    几何约束 显示和隐藏约束 单个直线的约束 绘制一个直线,点击左侧的中的水平或者竖直,, 如果要删除改约束,右键绿色的小矩形,相关被约束的对象变成分红,点击删除即可. 两个对象之间的约束 点击一个对象, ...

  7. js ajax跨域被阻止 CORS 头缺少 'Access-Control-Allow-Origin'(转)

    今天ajax请求域名的时候出现 已阻止跨源请求:同源策略禁止读取位于 http://www.zuimeimami.com*****的远程资源.(原因:CORS 头缺少 'Access-Control- ...

  8. MSF魔鬼训练营-5.3 MS08-067安全漏洞实战

    msf > search ms08_067 Matching Modules ================    Name                                 D ...

  9. 从零开始,SpreadJS新人学习笔记【第4周】

    数据绑定.脏数据和单引号前缀 本周,让我们一起来学习SpreadJS 的数据绑定.脏数据和单引号前缀,希望我的学习笔记能够帮助你们,从零开始学习 SpreadJS,并逐步精通. 在此前的学习笔记中,相 ...

  10. 02-Zookeeper介绍及安装

    1 Zookeeper介绍 ZooKeeper是为分布式应用所设计的高可用.高性能且一致的开源协调服务,它提供了一项基本服务:分布式锁服务.分布式应用可以基于它实现更高级的服务,实现诸如同步服务.配置 ...