Spark 计算人员二度关系
1、一度人脉:双方直接是好友
2、二度人脉:双方有一个以上共同的好友,这时朋友网可以计算出你们有几个共同的好友并且呈现数字给你。你们的关系是: 你->朋友->陌生人
3、三度人脉:即你朋友的朋友的朋友就是这个陌生人。你们的关系是 你->朋友->朋友->陌生人
4、四度人脉:比三度增加一度,你们的关系是,你->朋友->朋友->朋友->陌生人
5、五度人脉:你->朋友->朋友->朋友->朋友->陌生人 ,像上面这张图片表示的就是一个五度人脉关系。
6、六度人脉:你->朋友->朋友->朋友->朋友->朋友->陌生人
数据格式如下:
A,B
A,C
A,E
B,D
E,D
C,F
F,G
业务逻辑如下:
1、转换操作flatMapToPair将行数据变为键值对,如A,B表示A和B认识,A可以通过B认识B的朋友,B通过A可以认识A的朋友,转化结果为{A:A,B}、{B:B,A};
2、转换操作groupByKey对键值对按Key进行分组,转化结果为:{A,【A,B ,A,E , A,C 】}...;
3、转成操作flatMapToPair生成包含可能存在(A->B,A->C两者走向B和C不相同,B和C即存在可能)二度关系的新的键值对,如A和B认识且A与C认识,那么B与C可以存在认识关系即二度关系,路线走向为:B->A->C;
4、转成操作filter在新的键值对中筛选出一度关系即两者已经是认识的,如A和B认识是一度关系;
5、转成操作subtractByKey对包含二度关系的键值对删除存在一度关系的人员;
6、行为操作countByKey统计存在二度关系的比重;
具有实现:
package com.test;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.regex.Pattern;
import org.apache.commons.lang3.StringUtils;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.MapFunction;
import org.apache.spark.api.java.function.PairFlatMapFunction;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2;
public class Test1 {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setMaster("local").setAppName("My Test APP");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<String> rdd = sc.textFile("C:/rmgx.txt");
JavaPairRDD<String, String> r1 = rdd.flatMapToPair(new PairFlatMapFunction<String,String,String>(){
@Override
public Iterator<Tuple2<String, String>> call(String t)
throws Exception {
List<Tuple2<String, String>> list = new ArrayList();
String[] eachterm = t.split(",");
list.add(new Tuple2(eachterm[0], eachterm[0] + "," + eachterm[1]));
list.add(new Tuple2(eachterm[1],eachterm[1] + "," + eachterm[0]));
return list.iterator();
}
});
JavaPairRDD<String, Iterable<String>> r2 = r1.groupByKey();
JavaPairRDD<String, String> r3 = r2.flatMapToPair(new PairFlatMapFunction<Tuple2<String,Iterable<String>>,String,String>(){
@Override
public Iterator<Tuple2<String, String>> call(
Tuple2<String, Iterable<String>> t) throws Exception {
List<Tuple2<String, String>> list = new ArrayList();
for (Iterator iter = t._2.iterator(); iter.hasNext();) {
String str1 = (String)iter.next();
String str1_0 = str1.split(",")[0];
String str1_1 = str1.split(",")[1];
list.add(new Tuple2(str1_0+ "->" + str1_1,"deg1friend,"+str1_0+ "->" + str1_1));
for (Iterator iter2 = t._2.iterator(); iter2.hasNext();) {
String str2 = (String)iter2.next();
String str2_0 = str2.split(",")[0];
String str2_1 = str2.split(",")[1];
if(!str1_1.equals(str2_1)){
list.add(new Tuple2(str1_1+ "->" + str2_1 ,"deg2friend,"+str1_1 + "->" + str2_0 + "->" + str2_1));
}
}
}
return list.iterator();
}
});
JavaPairRDD<String, String> r4 = r3.filter(new Function<Tuple2<String,String>,Boolean>(){
@Override
public Boolean call(Tuple2<String, String> v1) throws Exception {
return v1._2.indexOf("deg1friend")>-1;
}
});
JavaPairRDD<String, String> r5 = r3.subtractByKey(r4);
System.out.println("线路走向:"+StringUtils.join(r5.collect(), ","));
Map<String, Long> r6 = r5.countByKey();
System.out.println("二度关系及比重:" + r6);
}
}
结果如下:
线路走向:(A->F,deg2friend,A->C->F),(F->A,deg2friend,F->C->A),(A->D,deg2friend,A->B->D),(A->D,deg2friend,A->E->D),(C->G,deg2friend,C->F->G),(C->E,deg2friend,C->A->E),(C->B,deg2friend,C->A->B),(G->C,deg2friend,G->F->C),(B->E,deg2friend,B->A->E),(B->E,deg2friend,B->D->E),(E->B,deg2friend,E->A->B),(E->B,deg2friend,E->D->B),(E->C,deg2friend,E->A->C),(B->C,deg2friend,B->A->C),(D->A,deg2friend,D->B->A),(D->A,deg2friend,D->E->A)
二度关系及比重:{F->A=1, C->G=1, A->D=2, B->E=2, E->B=2, C->B=1, C->E=1, B->C=1, G->C=1, D->A=2, A->F=1, E->C=1}
Spark 计算人员二度关系的更多相关文章
- Spark 计算人员三度关系
1.一度人脉:双方直接是好友 2.二度人脉:双方有一个以上共同的好友,这时朋友网可以计算出你们有几个共同的好友并且呈现数字给你.你们的关系是: 你->朋友->陌生人 3.三度人脉:即你朋友 ...
- Hadoop MapReduce实现人员二度关系运算
1.一度人脉:双方直接是好友 2.二度人脉:双方有一个以上共同的好友,这时朋友网可以计算出你们有几个共同的好友并且呈现数字给你.你们的关系是: 你->朋友->陌生人 3.三度人脉:即你朋友 ...
- 基于Spark GraphX计算二度关系
关系计算问题描述 二度关系是指用户与用户通过关注者为桥梁发现到的关注者之间的关系.目前微博通过二度关系实现了潜在用户的推荐.用户的一度关系包含了关注.好友两种类型,二度关系则得到关注的关注.关注的好友 ...
- 海量数据的二度人脉挖掘算法(Hadoop 实现)
最近做了一个项目,要求找出二度人脉的一些关系,就好似新浪微博的“你可能感兴趣的人” 中,间接关注推荐:简单描述:即你关注的人中有N个人同时都关注了 XXX . 在程序的实现上,其实我们要找的是:若 U ...
- MapReduce实现二度好友关系
一.问题定义 我在网上找了些,关于二度人脉算法的实现,大部分无非是通过广度搜索算法来查找,犹豫深度已经明确了2以内:这个算法其实很简单,第一步找到你关注的人:第二步找到这些人关注的人,最后找出第二步结 ...
- SparkGraphx计算指定节点的N度关系节点
直接上代码: package horizon.graphx.util import java.security.InvalidParameterException import horizon.gra ...
- 【Spark深入学习 -13】Spark计算引擎剖析
----本节内容------- 1.遗留问题解答 2.Spark核心概念 2.1 RDD及RDD操作 2.2 Transformation和Action 2.3 Spark程序架构 2.4 Spark ...
- GraphX实现N度关系
背景 本文给出了一个简单的计算图中每一个点的N度关系点集合的算法,也就是N跳关系. 之前通过官方文档学习和理解了一下GraphX的计算接口. N度关系 目标: 在N轮里.找到某一个点的N度关系的点集合 ...
- Spark计算模型
[TOC] Spark计算模型 Spark程序模型 一个经典的示例模型 SparkContext中的textFile函数从HDFS读取日志文件,输出变量file var file = sc.textF ...
随机推荐
- Spring Boot文件上传
一.创建一个简单的包含WEB依赖的SpringBoot项目 二.配置文件上传的文件大小限制 # 上传文件总的最大值spring.servlet.multipart.max-request-size=1 ...
- spring mvc 数据校验(bean实体注解实现)
spring mvc 数据校验 1.添加个jar (jar与一版本会冲突) <dependency> <groupId>com.fasterxml</groupId> ...
- 《x86汇编语言:从实模式到保护模式 》学习笔记之:第一次编写汇编语言
1.汇编语言源文件:first.asm mov ax,0x3f add bx,ax add cx,ax 2.用nasm编译成二进制文件:first.bin nasm -f bin first.asm ...
- 文件/大文件上传功能实现(JS+PHP)全过程
PHP用超级全局变量数组$_FILES来记录文件上传相关信息的. 1.file_uploads=on/off 是否允许通过http方式上传文件 2.max_execution_time=30 允许脚本 ...
- ipcloud上传裁切图片
主页: <!doctype html> <html> <head> <meta charset="utf-8"> <meta ...
- Java解析JSON文件的方法
http://blog.sina.com.cn/s/blog_628cc2b70101dydc.html java读取文件的方法 http://www.cnblogs.com/lovebread/ar ...
- hibernate class cast exception from object to ...
http://stackoverflow.com/questions/22548325/java-lang-classcastexception-cannot-be-cast-to-java-lang ...
- Linux shell - 重命名文件和文件夹(mv)
linux下重命名文件或文件夹的命令mv既可以重命名,又可以移动文件或文件夹. 例子:将目录A重命名为B mv A B 例子:将/a目录移动到/b下,并重命名为c mv /a /b/c
- pycharm中添加python3 的环境变量
i卡是HDKJHA{{sadfsdafdsafd.jpg(uploading...)}}S{{53ad37a938001.jpg(uploading...)}}
- Git 实践
最近也学习了Git的相关知识,现通过一个实例来记录Git使用流程,也方便日后使用. git的基础学习: https://www.yiibai.com/git/git-quick-start.html ...