【BZOJ5037】[Jsoi2014]电信网络

Description

JYY创建的电信公司,垄断着整个JSOI王国的电信网络。JYY在JSOI王国里建造了很多的通信基站。目前所有的基站都是使用2G网络系统的。而现在3G时代已经到来了,JYY在思考,要不要把一些基站升级成3G网络的呢?JSOI王国可以被看作为一个无穷大的二维平面,JYY一共建造了N个通信基站,第i个基站的坐标是(Xi,Yi)。每个基站有一个通信范围Ri。第i号基站会向所有到其距离不超过Ri的基站发送信息。每个基站升级到3G网络都会有一个收益Si,这个收益可能是正数(比如基站附近有个大城市,用户很多,赚的流量费也就很多了),也可能是负数(比如基站周围市场不佳,收益不能填补升级基站本身的投资)。此外,由于原有的使用2G网络系统的基站无法解析从升级成3G网络系统的基站所发来的信息(但是升级之后的基站是可以解析未升级基站发来的信息的),所以,JYY必须使得,在升级工作全部完成之后,所有使用3G网络的基站,其通信范围内的基站,也都是使用3G网络的。由于基站数量很多,你可以帮助JYY计算一下,他通过升级基站,最多能获得的收益是多少吗?

Input

第一行一个整数N;
接下来N行,每行4个整数,Xi,Yi,Ri,Si,表示处在(Xi,Yi)的基站的通信范围是Ri,升级可以获得的收益是Si。
数据满足任意两个基站的坐标不同。
1≤N≤500,1≤Ri≤20000,|Xi|,|Yi|,|Si|≤10^4。

Output

输出一行一个整数,表示可以获得的最大收益。

Sample Input

5
0 1 7 10
0 -1 7 10
5 0 1 -15
10 0 6 10
15 1 2 -20

Sample Output

5
【样例说明】
我们可以将前三座基站升级成 3G 网络,以获得最佳收益。

题解:显然是一个最大权闭合图的模型,直接上建图方法:

1.S->所有正权的点 容量:该点权权值
2.所有负权的点->T 容量:该点权值相反数
3.点>所有它能发射到的点 容量:inf

#include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
int n,cnt,ans,S,T;
int x[510],y[510],r[510],s[510];
int to[1000000],next[1000000],val[1000000],head[510],d[510];
queue<int> q;
inline int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void add(int a,int b,int c)
{
to[cnt]=b,val[cnt]=c,next[cnt]=head[a],head[a]=cnt++;
to[cnt]=a,val[cnt]=0,next[cnt]=head[b],head[b]=cnt++;
}
int dfs(int x,int mf)
{
if(x==T) return mf;
int i,k,temp=mf;
for(i=head[x];i!=-1;i=next[i])
{
if(d[to[i]]==d[x]+1&&val[i])
{
k=dfs(to[i],min(val[i],temp));
if(!k) d[to[i]]=0;
val[i]-=k,val[i^1]+=k,temp-=k;
if(!temp) break;
}
}
return mf-temp;
}
int bfs()
{
while(!q.empty()) q.pop();
memset(d,0,sizeof(d));
q.push(S),d[S]=1;
int i,u;
while(!q.empty())
{
u=q.front(),q.pop();
for(i=head[u];i!=-1;i=next[i])
{
if(!d[to[i]]&&val[i])
{
d[to[i]]=d[u]+1;
if(to[i]==T) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int main()
{
n=rd(),S=0,T=n+1;
int i,j;
memset(head,-1,sizeof(head));
for(i=1;i<=n;i++)
{
x[i]=rd(),y[i]=rd(),r[i]=rd(),s[i]=rd();
if(s[i]>0) ans+=s[i],add(S,i,s[i]);
else add(i,T,-s[i]);
}
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++) if(i!=j&&(x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j])<=r[i]*r[i]) add(i,j,1<<30);
}
while(bfs()) ans-=dfs(S,1<<30);
printf("%d",ans);
return 0;
}

【BZOJ5037】[Jsoi2014]电信网络 最大权闭合图的更多相关文章

  1. BZOJ5037[Jsoi2014]电信网络——最大权闭合子图

    题目描述 JYY创建的电信公司,垄断着整个JSOI王国的电信网络.JYY在JSOI王国里建造了很多的通信基站.目前所有的基站 都是使用2G网络系统的.而现在3G时代已经到来了,JYY在思考,要不要把一 ...

  2. 【TYVJ】1338 QQ农场(最大流+最大权闭合图)

    http://tyvj.cn/Problem_Show.aspx?id=1338 时间才排到rank7,还不快啊囧.isap我常数都写得那么小了... 最大权闭合图看我另一篇博文吧 此题很明显的模型. ...

  3. POJ 2987 Firing【最大权闭合图-最小割】

    题意:给出一个有向图,选择一个点,则要选择它的可以到达的所有节点.选择每个点有各自的利益或损失.求最大化的利益,以及此时选择人数的最小值. 算法:构造源点s汇点t,从s到每个正数点建边,容量为利益.每 ...

  4. POJ 2987 Firing 网络流 最大权闭合图

    http://poj.org/problem?id=2987 https://blog.csdn.net/u014686462/article/details/48533253 给一个闭合图,要求输出 ...

  5. hdu 2987最大权闭合图模板类型题

    /* 最大权闭合图模板类型的题,考验对知识概念的理解. 题意:如今要辞退一部分员工.辞退每个员工能够的到一部分利益(能够是负的),而且辞退员工,必须辞退他的下属.求最大利益和辞退的最小人数. 最大权闭 ...

  6. POJ2987 Firing 【最大权闭合图】

    POJ2987 Firing Description You've finally got mad at "the world's most stupid" employees o ...

  7. POJ 2987 Firing(最大流最小割の最大权闭合图)

    Description You’ve finally got mad at “the world’s most stupid” employees of yours and decided to do ...

  8. poj 2987(最大权闭合图+割边最少)

    题目链接:http://poj.org/problem?id=2987 思路:标准的最大权闭合图,构图:从源点s向每个正收益点连边,容量为收益:从每个负收益点向汇点t连边,容量为收益的相反数:对于i是 ...

  9. POJ 2987 Firing(最大权闭合图)

    [题目链接] http://poj.org/problem?id=2987 [题目大意] 为了使得公司效率最高,因此需要进行裁员, 裁去不同的人员有不同的效率提升效果,当然也有可能是负的效果, 如果裁 ...

随机推荐

  1. 一篇不错的讲解Java异常的文章(转载)----感觉很不错,读了以后很有启发

    六种异常处理的陋习 你觉得自己是一个Java专家吗?是否肯定自己已经全面掌握了Java的异常处理机制?在下面这段代码中,你能够迅速找出异常处理的六个问题吗? OutputStreamWriter ou ...

  2. 基于pydash临控linux服务器

    pydash项目地址:https://github.com/k3oni/pydash 一.安装过程 1.安装pip dnf install git python-pip -ypip install v ...

  3. python 常用的模块(base64)转

    Base64是一种用64个字符来表示任意二进制数据的方法. 用记事本打开exe.jpg.pdf这些文件时,我们都会看到一大堆乱码,因为二进制文件包含很多无法显示和打印的字符,所以,如果要让记事本这样的 ...

  4. [转载]How to Install Google Chrome 39 in CentOS/RHEL 6 and Fedora 19/18

    FROM: http://tecadmin.net/install-google-chrome-in-centos-rhel-and-fedora/ Google Chrome is a freewa ...

  5. 权重轮询调度算法(WeightedRound-RobinScheduling)-Java实现3

    权重轮询调度算法(WeightedRound-RobinScheduling)-Java实现3 之前两篇相关博文: 权重轮询调度算法(WeightedRound-RobinScheduling)-Ja ...

  6. Linux学习之二十一-shell编程基础

    Shell编程基础 Shell 是一个用 C 语言编写的程序,它是用户使用 Linux 的桥梁.Shell 既是一种命令语言,又是一种程序设计语言.Shell 是指一种应用程序,这个应用程序提供了一个 ...

  7. 【ecshop---新增包邮卡功能】

    一:需求分析 项目组要求新增类似虚拟卡的包邮卡,用户获得包邮卡的方式包括后台发送和前台自助充值.包邮卡有使用期限.订单使用包邮卡免除邮费.可以和其他优惠活动同时进行! 二:开发功能点 后台:新增包邮卡 ...

  8. Java模式的秘密--java常用的几种模式

    要学习设计模式,首先要明白设计模式,就是为实现某一种或某一组功能提供的代码编码方式.它没有固定的套路,只有约定俗成的风格.所有编码者可以根据已有的设计模式开放思维,设计出自己的设计模式,也会在无意中使 ...

  9. 【Javascript 基础】对象

    1 创建对象 Javascript 支持对象的概率.有多种方法可以用来创建对象. <!DOCTYPE html> <html lang="en"> < ...

  10. pugixml 的常见读写操作

    pugixml github地址 : https://github.com/zeux/pugixml pugixml 可以在github上直接下载到源码,包括两个头文件(pugixml.hpp  pu ...