题面

传送门

思路

这题目是真的难读......阅读理解题啊......

但是理解了以后就发现,题目等价于:

给你一个区间,支持单点修改,以及查询一段区间的乘积的欧拉函数值,这个答案对19961993取模

这里是欧拉函数的原因显然,题目中的那个不相冲实际上就是扩展欧几里得里面的那个定理,要满足不相冲(也就是方程有解),$product$和$number$必须互质

序列当中,每个元素大小不超过1e6,质因数都是前60个

那么我们显然可以开一棵线段树来维护这个区间乘积,但是怎么处理欧拉函数呢?$O(\sqrt{n})$的复杂度求吗?但是这题可以到$1000000^{100000}$诶......

没关系,我们来看一个神秘小技巧

设一个数$x=\prod_{i=1}{k}p_i{a_i}$,那么:

$\varphi(x)=\prod_{i=1}{k}(p_i-1)p_i{a_i-1}=x\prod_{i=1}^{k}\frac{p_i-1}{p_i}$

那么我们再开一棵线段树,把60个质因数在对应区间里的出现情况压进一个long long里面

每次查询的时候,查询出来取模过的乘积,再对每个出现过的质因数乘上模意义下的$\frac{p_i-1}{p_i}$,就是答案了

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cassert>
#define ll long long
#define mp make_pair
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(ch>'9'||ch<'0'){
if(ch=='-') flag=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9') re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
const ll MOD=19961993;
ll qpow(ll a,ll b){
ll re=1ll;
while(b){
if(b&1) re=re*a%MOD;
a=a*a%MOD;b>>=1;
}
return re;
}
int vis[310],pri[70],cntp,inv[70];
void init(){
int i,j,k;vis[1]=1;
for(i=2;i<=281;i++){
if(!vis[i]) pri[++cntp]=i,inv[cntp]=qpow(i,MOD-2);
for(j=1;j<=cntp;j++){
k=i*pri[j];if(k>281) break;
vis[k]=1;
if(i%pri[j]==0) break;
}
}
}
ll a[400010],bit[400010];//a是乘积,b是压位的质因数状态
void update(int num){
int son=num<<1;
a[num]=a[son]*a[son+1]%MOD;
bit[num]=bit[son]|bit[son+1];
}
void build(int l,int r,int num){
int mid=(l+r)>>1;
if(l==r){
a[num]=3;bit[num]=2;return;
}
build(l,mid,num<<1);build(mid+1,r,(num<<1)+1);
update(num);
}
void change(int l,int r,int num,int pos,ll val){
int mid=(l+r)>>1,i;
if(l==r){
a[num]=val;bit[num]=0;
for(i=1;i<=60;i++) if(val%pri[i]==0) bit[num]|=(1ll<<(i-1));
return;
}
if(mid>=pos) change(l,mid,num<<1,pos,val);
else change(mid+1,r,(num<<1)+1,pos,val);
update(num);
}
pair<ll,ll> query(int l,int r,int ql,int qr,int num){
int mid=(l+r)>>1;pair<ll,ll>re=mp(1,0),tmp;
if(l>=ql&&r<=qr) return mp(a[num],bit[num]);
if(mid>=ql){
tmp=query(l,mid,ql,qr,num<<1);
re.first=re.first*tmp.first%MOD;
re.second|=tmp.second;
}
if(mid<qr){
tmp=query(mid+1,r,ql,qr,(num<<1)+1);
re.first=re.first*tmp.first%MOD;
re.second|=tmp.second;
}
return re;
}
int main(){
int n=read(),i,t1,t2,t3;build(1,100000,1);pair<ll,ll>tmp;
init();
while(n--){
t1=read();t2=read();t3=read();
if(t1) change(1,100000,1,t2,t3);
else{
tmp=query(1,100000,t2,t3,1);
for(i=1;i<=60;i++)
if(tmp.second&(1ll<<(i-1)))
tmp.first=tmp.first*(pri[i]-1)%MOD*inv[i]%MOD;
printf("%lld\n",tmp.first);
}
}
}

[bzoj3813] 奇数国 [线段树+欧拉函数]的更多相关文章

  1. 【BZOJ3813】奇数国 线段树+欧拉函数

    [BZOJ3813]奇数国 Description 给定一个序列,每次改变一个位置的数,或是询问一段区间的数的乘积的phi值.每个数都可以表示成前60个质数的若干次方的乘积. Sample Input ...

  2. BZOJ 3813--奇数国(线段树&欧拉函数&乘法逆元&状态压缩)

    3813: 奇数国 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 755  Solved: 432[Submit][Status][Discuss] ...

  3. 【bzoj3813】: 奇数国 数论-线段树-欧拉函数

    [bzoj3813]: 奇数国 题意:给定一个序列,每个元素可以分解为最小的60个素数的形式.(x=p1^k1*p2^k2*......p60^k60)(p1=2,p2=3,…,p60=281) 支持 ...

  4. [BZOJ3813] 奇数国 - 线段树

    3813: 奇数国 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 912  Solved: 508[Submit][Status][Discuss] ...

  5. Please, another Queries on Array?(Codeforces Round #538 (Div. 2)F+线段树+欧拉函数+bitset)

    题目链接 传送门 题面 思路 设\(x=\prod\limits_{i=l}^{r}a_i\)=\(\prod\limits_{i=1}^{n}p_i^{c_i}\) 由欧拉函数是积性函数得: \[ ...

  6. 线段树+欧拉函数——cf1114F

    调了半天,写线段树老是写炸 /* 两个操作 1.区间乘法 2.区间乘积询问欧拉函数 欧拉函数计算公式 phi(mul(ai))=mul(ai) * (p1-1)/p1 * (p2-1)/p2 * .. ...

  7. Please, another Queries on Array? CodeForces - 1114F (线段树,欧拉函数)

    这题刚开始看成求区间$\phi$和了........先说一下区间和的做法吧...... 就是说将题目的操作2改为求$(\sum\limits_{i=l}^{r}\phi(a[i]))\%P$ 首先要知 ...

  8. BZOJ4869 六省联考2017相逢是问候(线段树+欧拉函数)

    由扩展欧拉定理,a^(a^(a^(……^x)))%p中x作为指数的模数应该是φ(φ(φ(φ(……p)))),而p取log次φ就会变为1,也即每个位置一旦被修改一定次数后就会变为定值.线段树维护区间剩余 ...

  9. BZOJ 4026: dC Loves Number Theory 可持久化线段树 + 欧拉函数 + 数学

    Code: #include <bits/stdc++.h> #define ll long long #define maxn 50207 #define setIO(s) freope ...

随机推荐

  1. esdoc 自动生成接口文档介绍

    原文地址:https://www.xingkongbj.com/blog/esdoc/creat-esdoc.html 官网 ESDoc:https://esdoc.org/ JSDoc:http:/ ...

  2. Hbase学习指南

    本篇Hbase组件基于CDH5进行安装,安装过程:https://www.cnblogs.com/dmjx/p/10037066.html Hbase简介 HBase是一个高可靠.高性能.面向列.可伸 ...

  3. java数组之二分法查找

    认识: 猜字游戏 步数 所猜的数 结果 可能值的范围 0     1~100 1 50 太高 1~49 2 25 太低 26~49 3 37 太高 26~36 4 31 太低 32~36 5 34 太 ...

  4. CentOS7下安装FTP

    1.安装vsftpd yum install -y vsftpd 2.设置 使用命令systemctl status vsftpd.service查看ftp状态. 开启ftp systemctl st ...

  5. Java 算法随笔(一)

    1. 最大子序列和问题 给定(可能有负数)整数a(1).a(2).……a(n),求 a(1)+a(2)+……+a(j)的最大值. 也就是:在一系列整数中,找出连续的若干个整数,这若干个整数之和最大.有 ...

  6. elasticsearch 5.x 系列之一 开始安装啦

    以下是镇楼用的,各路退让,我要吹liubi 了 // // _oo0oo_ // o8888888o // 88" . "88 // (| -_- |) // 0\ = /0 // ...

  7. 神经网络的训练和测试 python

    承接上一节,神经网络需要训练,那么训练集来自哪?测试的数据又来自哪? <python神经网络编程>一书给出了训练集,识别图片中的数字.测试集的链接如下: https://raw.githu ...

  8. 37-生成 JWT Token

    接到上篇文章 安装扩展插件nuget package方法安装包 使用 ctrl+shift+p打开命令面板 增加这个包,  Microsoft.AspNetCore.Authentication.Jw ...

  9. 笔记-falsk-入门-1

    笔记-falsk-入门-1 1.      前言 有几个概念需要解释下,WSGI,JINJA2,WERKZEUG Flask是典型的微框架,作为Web框架来说,它仅保留了核心功能:请求响应处理和模板渲 ...

  10. P1133 教主的花园

    P1133 教主的花园 题目描述 教主有着一个环形的花园,他想在花园周围均匀地种上n棵树,但是教主花园的土壤很特别,每个位置适合种的树都不一样,一些树可能会因为不适合这个位置的土壤而损失观赏价值. 教 ...