一、Description

The most important part of a GSM network is so called Base Transceiver Station (BTS). These transceivers form the areas called cells (this term gave the name to the cellular phone) and every phone connects to the BTS with the strongest
signal (in a little simplified view). Of course, BTSes need some attention and technicians need to check their function periodically.



ACM technicians faced a very interesting problem recently. Given a set of BTSes to visit, they needed to find the shortest path to visit all of the given points and return back to the central company building. Programmers have spent several months studying
this problem but with no results. They were unable to find the solution fast enough. After a long time, one of the programmers found this problem in a conference article. Unfortunately, he found that the problem is so called "Travelling Salesman Problem" and
it is very hard to solve. If we have N BTSes to be visited, we can visit them in any order, giving us N! possibilities to examine. The function expressing that number is called factorial and can be computed as a product 1.2.3.4....N. The number is very high
even for a relatively small N.



The programmers understood they had no chance to solve the problem. But because they have already received the research grant from the government, they needed to continue with their studies and produce at least some results. So they started to study behaviour
of the factorial function.



For example, they defined the function Z. For any positive integer N, Z(N) is the number of zeros at the end of the decimal form of number N!. They noticed that this function never decreases. If we have two numbers N1 < N2, then Z(N1) <= Z(N2). It is because
we can never "lose" any trailing zero by multiplying by any positive number. We can only get new and new zeros. The function Z is very interesting, so we need a computer program that can determine its value efficiently.


Input

There is a single positive integer T on the first line of input. It stands for the number of numbers to follow. Then there is T lines, each containing exactly one positive integer number N, 1 <= N <= 1000000000.

Output

For every number N, output a single line containing the single non-negative integer Z(N).

二、题解

       这个题目看了很久还是没看懂,后来发现要求阶乘后的数尾数中0的个数。于是就傻逼的算阶乘,这个根本没法算,数太大了,会发生溢出的。于是就想到要有0就只有1 * 10, 2 * 5而10也可以化成2 * 5,而显然能被5整除的个数远小于能被2整除的个数,于是就计算1~60中能被5整除的个数,后来发现还是不对,结果要比答案少。后来发现,原来25 * 4=100,能增加两个0,而25=5 * 5,能分开来乘。所以,所以在<N的数里面,能分出多少个5来,末尾就多少个0。

       所以应该这样计算:


100/5=20->20/5=4
那么20+4=24
1024/5=204 -> 204/5=40 -> 40/5=8 -> 8/5=1
那么204+40+8+1=253

这里的严谨分析应该是进行质因数分解N ! =(2^x) * (3^y) * (5^z)...,由于10=2*5,所以M只跟x和z有关,每一对2和5相乘可以得到一个10,于是M=min(x,z)。不难看出x大于z,因为能被2整除的数出现的频率能被5整除的数高得多,所以把公式简化为M=z.

       根据上面的分析,只要计算出Z的值,就可以得到N!末尾0的个数了。

三、java代码

import java.util.Scanner;

  public class Main {

	  public static void main(String[] args)  {
Scanner sc = new Scanner(System.in);
int n,m,out;
n=sc.nextInt();
while(n!=0){
m=sc.nextInt();
out=0;
while (m>=5){
m/=5;
out+=m;
}
System.out.println(out);
n--;
}
}
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

Poj 1401 Factorial(计算N!尾数0的个数——质因数分解)的更多相关文章

  1. 【CodeChef】Factorial(n!末尾0的个数)

    The most important part of a GSM network is so called Base Transceiver Station (BTS). These transcei ...

  2. POJ 1401 Factorial

    题意:求一个数的阶乘最后边有几个0. 解法:如果有0说明这个数含有2和5这两个因子,对于一个阶乘来说因子2的数量一定比5的数量多,所以只要算有几个5就可以了,依次算5的个数,25的个数,125的个数… ...

  3. n阶乘 尾数0的个数

    class Solution {public: int trailingZeroes(int n) {            if(n<=0) return 0; int i=0;        ...

  4. ACM: POJ 1401 Factorial-数论专题-水题

    POJ 1401 Factorial Time Limit:1500MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu   ...

  5. 计算阶乘n!末尾0的个数

    一.问题描述 给定一个正整数n,请计算n的阶乘n!末尾所含有“0”的个数.例如: 5!=120,其末尾所含有的“0”的个数为1: 10!= 3628800,其末尾所含有的“0”的个数为2: 20!= ...

  6. 计算n的阶乘(n!)末尾0的个数

    题目: 给定一个正整数n,请计算n的阶乘n!末尾所含有“0”的个数. 举例: 5!=120,其末尾所含有的“0”的个数为1: 10!= 3628800,其末尾所含有的“0”的个数为2: 20!= 24 ...

  7. 扩展1000!(n!)的尾数零的个数

    #include <stdio.h> #include <malloc.h> //计算1000!尾数零的个数 //扩展n!的尾数零的个数 //2^a * 5^b //obvio ...

  8. POJ 1401:Factorial 求一个数阶乘的末尾0的个数

    Factorial Time Limit: 1500MS   Memory Limit: 65536K Total Submissions: 15137   Accepted: 9349 Descri ...

  9. pku 1401 Factorial 算数基本定理 && 51nod 1003 阶乘后面0的数量

    链接:http://poj.org/problem?id=1401 题意:计算N!的末尾0的个数 思路:算数基本定理 有0,分解为2*5,寻找2*5的对数,2的因子个数大于5,转化为寻找因子5的个数. ...

随机推荐

  1. zookeepeer ID生成器 (一)

    目录 写在前面 1.1. ZK 的分布式命名服务 1.1.1. 分布式 ID 生成器的类型 UUID方案 1.1.2. ZK生成分布式ID 写在最后 疯狂创客圈 亿级流量 高并发IM 实战 系列 疯狂 ...

  2. 给MDI窗体加背景,解释MakeObjectInstance和CallWindowProc的用法

    工程含有1个MDI主窗口和2个子窗口.唯一需要注意的是,每个窗体都有ClientHandle,但只有当自己是MDI主窗体的情况下才有值,否则等于0. unit Unit1; interface use ...

  3. Adam 算法

    简介 Adam 是一种可以替代传统随机梯度下降(SGD)过程的一阶优化算法,它能基于训练数据迭代地更新神经网络权重.Adam 最开始是由 OpenAI 的 Diederik Kingma 和多伦多大学 ...

  4. LeetCode:移动零【283】

    LeetCode:移动零[283] 题目描述 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序. 示例: 输入: [0,1,0,3,12] 输出: [1,3 ...

  5. python的property属性

    最近看书中关于Python的property()内建函数属性内容时<python核心编程>解释的生僻难懂,但在网上看到了一篇关于property属性非常好的译文介绍. http://pyt ...

  6. NOIP前的一些计划

    一些想法 距离NOIP2018只剩下一个星期的时间了,通过这几天在长郡的考试,渐渐感觉还有好多东西自己还不够熟练,也有些东西到现在还不会,现将NOIP前的一些计划列在这里,希望能在考前把他们全部完成吧 ...

  7. M1905

    11.09    11:00------102万 11.09     14:00---103万 11.12    16:00------103万 11.19     16:00---94万 11.20 ...

  8. Base64Util工具类

    package com.qianmi.weidian.common.util; import java.io.*; /** * This class provides encode/decode fo ...

  9. linux 压缩和归档

    在linux下有几种压缩方式:gzip.bzip2.xz.zip gzip 压缩文件以.gz结尾, 只能压缩文件,不能压缩目录 用法: gzip:/path/to/somefile   用来压缩,完成 ...

  10. spring boot: 一般注入说明(四) Profile配置,Environment环境配置 @Profile注解

    1.通过设定Environment的ActiveProfile来设置当前context所需要的环境配置,在开发中使用@Profile注解类或方法,达到不同情况下选择实例化不同的Bean. 2.使用jv ...