Poj 1401 Factorial(计算N!尾数0的个数——质因数分解)
一、Description
signal (in a little simplified view). Of course, BTSes need some attention and technicians need to check their function periodically.
ACM technicians faced a very interesting problem recently. Given a set of BTSes to visit, they needed to find the shortest path to visit all of the given points and return back to the central company building. Programmers have spent several months studying
this problem but with no results. They were unable to find the solution fast enough. After a long time, one of the programmers found this problem in a conference article. Unfortunately, he found that the problem is so called "Travelling Salesman Problem" and
it is very hard to solve. If we have N BTSes to be visited, we can visit them in any order, giving us N! possibilities to examine. The function expressing that number is called factorial and can be computed as a product 1.2.3.4....N. The number is very high
even for a relatively small N.
The programmers understood they had no chance to solve the problem. But because they have already received the research grant from the government, they needed to continue with their studies and produce at least some results. So they started to study behaviour
of the factorial function.
For example, they defined the function Z. For any positive integer N, Z(N) is the number of zeros at the end of the decimal form of number N!. They noticed that this function never decreases. If we have two numbers N1 < N2, then Z(N1) <= Z(N2). It is because
we can never "lose" any trailing zero by multiplying by any positive number. We can only get new and new zeros. The function Z is very interesting, so we need a computer program that can determine its value efficiently.
Input
Output
二、题解
这个题目看了很久还是没看懂,后来发现要求阶乘后的数尾数中0的个数。于是就傻逼的算阶乘,这个根本没法算,数太大了,会发生溢出的。于是就想到要有0就只有1 * 10, 2 * 5而10也可以化成2 * 5,而显然能被5整除的个数远小于能被2整除的个数,于是就计算1~60中能被5整除的个数,后来发现还是不对,结果要比答案少。后来发现,原来25 * 4=100,能增加两个0,而25=5 * 5,能分开来乘。所以,所以在<N的数里面,能分出多少个5来,末尾就多少个0。
所以应该这样计算:
100/5=20->20/5=4
那么20+4=24
1024/5=204 -> 204/5=40 -> 40/5=8 -> 8/5=1
那么204+40+8+1=253
这里的严谨分析应该是进行质因数分解N ! =(2^x) * (3^y) * (5^z)...,由于10=2*5,所以M只跟x和z有关,每一对2和5相乘可以得到一个10,于是M=min(x,z)。不难看出x大于z,因为能被2整除的数出现的频率能被5整除的数高得多,所以把公式简化为M=z.
根据上面的分析,只要计算出Z的值,就可以得到N!末尾0的个数了。
三、java代码
import java.util.Scanner; public class Main { public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n,m,out;
n=sc.nextInt();
while(n!=0){
m=sc.nextInt();
out=0;
while (m>=5){
m/=5;
out+=m;
}
System.out.println(out);
n--;
}
}
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
Poj 1401 Factorial(计算N!尾数0的个数——质因数分解)的更多相关文章
- 【CodeChef】Factorial(n!末尾0的个数)
The most important part of a GSM network is so called Base Transceiver Station (BTS). These transcei ...
- POJ 1401 Factorial
题意:求一个数的阶乘最后边有几个0. 解法:如果有0说明这个数含有2和5这两个因子,对于一个阶乘来说因子2的数量一定比5的数量多,所以只要算有几个5就可以了,依次算5的个数,25的个数,125的个数… ...
- n阶乘 尾数0的个数
class Solution {public: int trailingZeroes(int n) { if(n<=0) return 0; int i=0; ...
- ACM: POJ 1401 Factorial-数论专题-水题
POJ 1401 Factorial Time Limit:1500MS Memory Limit:65536KB 64bit IO Format:%lld & %llu ...
- 计算阶乘n!末尾0的个数
一.问题描述 给定一个正整数n,请计算n的阶乘n!末尾所含有“0”的个数.例如: 5!=120,其末尾所含有的“0”的个数为1: 10!= 3628800,其末尾所含有的“0”的个数为2: 20!= ...
- 计算n的阶乘(n!)末尾0的个数
题目: 给定一个正整数n,请计算n的阶乘n!末尾所含有“0”的个数. 举例: 5!=120,其末尾所含有的“0”的个数为1: 10!= 3628800,其末尾所含有的“0”的个数为2: 20!= 24 ...
- 扩展1000!(n!)的尾数零的个数
#include <stdio.h> #include <malloc.h> //计算1000!尾数零的个数 //扩展n!的尾数零的个数 //2^a * 5^b //obvio ...
- POJ 1401:Factorial 求一个数阶乘的末尾0的个数
Factorial Time Limit: 1500MS Memory Limit: 65536K Total Submissions: 15137 Accepted: 9349 Descri ...
- pku 1401 Factorial 算数基本定理 && 51nod 1003 阶乘后面0的数量
链接:http://poj.org/problem?id=1401 题意:计算N!的末尾0的个数 思路:算数基本定理 有0,分解为2*5,寻找2*5的对数,2的因子个数大于5,转化为寻找因子5的个数. ...
随机推荐
- zoj 3716 Ribbon Gymnastics【神奇的计算几何】
题目:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3716 来源:http://acm.hust.edu.cn/vjudg ...
- CentOS6下安装PHP7
更新软件源[1] wget https://dl.fedoraproject.org/pub/epel/epel-release-latest-6.noarch.rpm wget http://rpm ...
- JDBC详解1
JDBC详解1 JDBC整体思维导图 JDBC入门 导jar包:驱动! 加载驱动类:Class.forName("类名"); 给出url.username.password,其中u ...
- Linux安装samba
说明:samba的作用是实现window环境和linux环境下的文件共享,相当于window里的网络邻居,有一定的价值,但是随着时代的发展,现在用各种ssh软件登录linux实现文件共享和传输的场景越 ...
- ALV 表头 ADD_TEXT
[转自http://lz357502668.blog.163.com/blog/static/16496743201252891452493/] CALL METHOD valid_reference ...
- PHP保存数组到文件中的方法
ThinkPHP自3.1以后的版本,F函数保存数组时先序列化后再保存到文件中,因为我需要使用C方法来读取自定义配置文件,故需要把PHP数组保存到文件中以便C方法读取,PHP保存数组到文件的方法如下: ...
- 3.06课·········C#语言基础
Main函数: static void Main(string [] args){ }程序代码需要写在Main函数的花括号内. 一.输出:Console.WriteLine("这是我的第一个 ...
- HDU - 1176 免费馅饼 【DP】
题目链接 http://acm.hdu.edu.cn/showproblem.php?pid=1176 思路 因为刚开始的起点是固定的 但是终点不是固定的 所以我们可以从终点往起点推 dp[i][j] ...
- pygame躲敌人的游戏
#first.py# coding=utf- import pygame from pygame.locals import * from sys import exit from util impo ...
- 【leetcode刷题笔记】Edit Distance
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2 ...