【bzoj1965】: [Ahoi2005]SHUFFLE 洗牌 数论-快速幂-扩展欧几里得
【bzoj1965】: [Ahoi2005]SHUFFLE 洗牌
观察发现第x张牌
当x<=n/2 x=2x
当x>n/2 x=2x-n-1
好像就是 x=2x mod (n+1)
就好了
/* http://www.cnblogs.com/karl07/ */
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std;
#define LL long long LL n,m,l,g,x,y; LL gcd(LL a,LL b){return !b ? a : gcd(b,a%b);} void ex_gcd(LL a,LL b,LL &x,LL &y){
if (b==){x=; y=; return;}
ex_gcd(b,a%b,y,x);
y-=x*(a/b);
} LL Q_pow(LL x,LL y){
LL ans=;
while(y){
if (y&) ans=ans*x%(n+);
x=x*x%(n+);
y=(y>>);
}
return ans;
} int main(){
scanf("%lld%lld%lld",&n,&m,&l);
m=Q_pow(,m);
g=gcd(n+,m);
ex_gcd(m/g,(n+)/g,x,y);
x=x*(l/g)%(n+);
printf("%lld\n",(x+(n+))%(n+));
return ;
}
【bzoj1965】: [Ahoi2005]SHUFFLE 洗牌 数论-快速幂-扩展欧几里得的更多相关文章
- 2018.11.07 bzoj1965: [Ahoi2005]SHUFFLE 洗牌(快速幂+exgcd)
传送门 发现自己的程序跑得好慢啊233. 管他的反正AC了 先手玩样例找了一波规律发现题目要求的就是a∗2m≡l(modn+1)a*2^m\equiv l \pmod {n+1}a∗2m≡l(modn ...
- 【bzoj2242】: [SDOI2011]计算器 数论-快速幂-扩展欧几里得-BSGS
[bzoj2242]: [SDOI2011]计算器 1.快速幂 2.扩展欧几里得(费马小定理) 3.BSGS /* http://www.cnblogs.com/karl07/ */ #include ...
- BZOJ 1965 [Ahoi2005]SHUFFLE 洗牌:快速幂 + 逆元
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1965 题意: 对于扑克牌的一次洗牌是这样定义的,将一叠N(N为偶数)张扑克牌平均分成上下两 ...
- BZOJ 1965: [Ahoi2005]SHUFFLE 洗牌( 数论 )
对于第x个数, 下一轮它会到位置p. 当x<=N/2, p = x*2 当x>N/2, p = x*2%(N+1) 所以p = x*2%(N+1) 设一开始的位置为t, 那么t*2M%(N ...
- BZOJ1965 [Ahoi2005]SHUFFLE 洗牌 快速幂
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1965 题意概括 对于扑克牌的一次洗牌是这样定义的,将一叠N(N为偶数)张扑克牌平均分成上下两叠,取 ...
- bzoj1965 [Ahoi2005]SHUFFLE 洗牌
Description 为了表彰小联为Samuel星球的探险所做出的贡献,小联被邀请参加Samuel星球近距离载人探险活动. 由于Samuel星球相当遥远,科学家们要在飞船中度过相当长的一段时间,小联 ...
- BZOJ1965: [Ahoi2005]SHUFFLE 洗牌(exgcd 找规律)
Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 989 Solved: 660[Submit][Status][Discuss] Description ...
- B1965 [Ahoi2005]SHUFFLE 洗牌 数论
这个题的规律很好找,就是奇数直接除二,偶数除二加n/2.把这个规律整理一下就是(x * 2) % (n + 1),然后就直接求逆元就行了.一直30分的原因是qpow函数传参的时候用的int,然而变量是 ...
- bzoj 2242 [SDOI2011]计算器 快速幂+扩展欧几里得+BSGS
1:快速幂 2:exgcd 3:exbsgs,题里说是素数,但我打的普通bsgs就wa,exbsgs就A了...... (map就是慢)..... #include<cstdio> # ...
随机推荐
- 我的MyGeneration
话不多说,直接上代码 Interface Code: public class GeneratedGui : DotNetScriptGui { public GeneratedGui(ZeusCon ...
- java代码随机数组合,随机号码产生器
总结:还是掌握方法的运用++++++ package com.c2; //随机数组合,随机号码产生器 //随机号码 import java.util.Random; public class rfe ...
- JVM插码之四:Java动态代理机制的对比(JDK 和CGLIB,Javassist,ASM)
一.class文件简介及加载 Java编译器编译好Java文件之后,产生.class 文件在磁盘中.这种class文件是二进制文件,内容是只有JVM虚拟机能够识别的机器码.JVM虚拟机读取字节码文件, ...
- 修改crushmap实验
标签(空格分隔): ceph,ceph实验,crushmap CRUSH的全称是Controlled Replication Under Scalable Hashing,是ceph数据存储的分布式选 ...
- Apache Geronimo Remote Code Execute Vulnerability
简介: Apache Geronimo 是 Apache 软件基金会的开放源码J2EE服务器,它集成了众多先进技术和设计理念. 这些技术和理念大多源自独立的项目,配置和部署模型也各不相同. Geron ...
- PHP函数(六)-匿名函数(闭包函数)
匿名函数能够临时创建一个没有名称的函数,常用作回调函数参数的值 <?php $test = function($a){ echo "Hello,".$a; }; $test( ...
- 2016.1.23 通过cmd在程序中执行sql脚本
System.Diagnostics.Process pro = new System.Diagnostics.Process(); pro.StartInfo.FileName = "cm ...
- JAVA基础知识总结6(面向对象特征之一:多态)
多 态:函数本身就具备多态性,某一种事物有不同的具体的体现. 体现:父类引用或者接口的引用指向了自己的子类对象. Animal a = new Cat(); 多态的好处:提高了程序的扩展性. 多态的弊 ...
- 连接ORACLE客户端工具navicat111.12 for oracle
安装navicat111.12 for oracle后 打开
- day35-hibernate映射 05-Hibernate的一级缓存:快照区
SessionImpl里面有很多的Java集合,很多java集合才构成了一级缓存.一级缓存里面有一个非常特殊的区域叫做快照区.SessionImpl实现了Session接口,有很多Java集合(包括M ...