BZOJ1096 [ZJOI2007]仓库建设(斜率优化)
题目背景
小B的班级数学学到多项式乘法了,于是小B给大家出了个问题:用编程序来解决多项式乘法的问题。
题目描述
L公司有N个工厂,由高到底分布在一座山上。
工厂1在山顶,工厂N在山脚。 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用。
突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场暴雨,于是L先生决定紧急在某些工厂建立一些仓库以免产品被淋坏。
由于地形的不同,在不同工厂建立仓库的费用可能是不同的。第i个工厂目前已有成品Pi件,在第i个工厂位置建立仓库的费用是Ci。
对于没有建立仓库的工厂,其产品应被运往其他的仓库进行储藏,而由于L公司产品的对外销售处设置在山脚的工厂N,故产品只能往山下运(即只能运往编号更大的工厂的仓库),当然运送产品也是需要费用的,假设一件产品运送1个单位距离的费用是1。
假设建立的仓库容量都都是足够大的,可以容下所有的产品。你将得到以下数据:
- 工厂i距离工厂1的距离Xi(其中X1=0);
- 工厂i目前已有成品数量Pi;
- 在工厂i建立仓库的费用Ci;
请你帮助L公司寻找一个仓库建设的方案,使得总的费用(建造费用+运输费用)最小。
输入输出格式
输入格式:
第一行包含一个整数N,表示工厂的个数。接下来N行每行包含两个整数Xi, Pi, Ci, 意义如题中所述。
输出格式:
仅包含一个整数,为可以找到最优方案的费用。
输入输出样例
说明
在工厂1和工厂3建立仓库,建立费用为10+10=20,运输费用为(9-5)*3 = 12,总费用32。
如果仅在工厂3建立仓库,建立费用为10,运输费用为(9-0)5+(9-5)3=57,总费用67,不如前者优。
对于20%的数据, N ≤500;
对于40%的数据, N ≤10000;
对于100%的数据, N ≤1000000。 所有的Xi, Pi, Ci均在32位带符号整数以内,保证中间计算结果不超过64位带符号整数。
题解
妈耶……原来这就是斜率优化么……先膜一波AC666大佬
考虑dp$$dp_i=min_{0\leq j<i}\{dp_j+x_i*\sum _{l=j+1}^i p_l-\sum_{l=j+1}^i p_l*x_l \}+c_i$$
设$sump_i=\sum _{j=1}^ip_i$,$sum_i=\sum _{j=1}^i p_i*x_i$
那么原始可以化简为$$dp_i=min_{0\leq j<i}\{dp_j+x_i(sump_i-sump_j)-(sum_i-sum_j) \}+c_i$$
然后假设$j$比$k$更优,且有$j>k$,则有$$dp_j+x_i(sump_i-sump_j)-(sum_i-sum_j)<dp_k+x_i(sump_i-sump_k)-(sum_i-sum_k)$$
然后化简得$$dp_j-x_i*sump_j+sum_j<dp_k-x_i*sump_k+sum_k$$
$$(dp_j+sum_j)-(dp_k+sum_k)<x_i*sump_j-x_i*sump_k$$
$$\frac{(dp_j+sum_j)-(dp_k+sum_k)}{sump_j-sump_k}<x_i$$
然后令$Y_i=dp_i-sum_i,X_i=sump_i$
那么$$\frac{Y_j-Y_k}{X_j-X_k}<x_i$$
然后直接用斜率优化即可
//minamoto
#include<iostream>
#include<cstdio>
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=1e6+;
ll sump[N],sum[N],dp[N];
int n,x[N],p[N],c[N],q[N],h,t;
inline ll Y(int i){
return dp[i]+sum[i];
}
inline ll X(int i){
return sump[i];
}
inline double slope(int i,int j){
return (double)(Y(i)-Y(j))/(X(i)-X(j));
}
int main(){
n=read();
for(int i=;i<=n;++i){
x[i]=read(),p[i]=read(),c[i]=read();
sump[i]=sump[i-]+p[i];
sum[i]=sum[i-]+1ll*p[i]*x[i];
}
for(int i=;i<=n;++i){
while(h<t&&slope(q[h],q[h+])<x[i]) ++h;
int j=q[h];dp[i]=dp[j]+(sump[i]-sump[j])*x[i]-sum[i]+sum[j]+c[i];
while(h<t&&slope(q[t],q[t-])>slope(q[t-],i)) --t;q[++t]=i;
}
printf("%lld\n",dp[n]);
return ;
}
BZOJ1096 [ZJOI2007]仓库建设(斜率优化)的更多相关文章
- bzoj1096[ZJOI2007]仓库建设 斜率优化dp
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 5482 Solved: 2448[Submit][Stat ...
- [BZOJ1096] [ZJOI2007] 仓库建设 (斜率优化)
Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天, ...
- BZOJ1096 [ZJOI2007]仓库建设——斜率优化
方程: $\Large f(i)=min(f(j)+\sum\limits_{k=j+1}^{i}(x_i-x_k)*p_k)+c_i$ 显然这样的方程复杂度为$O(n^3)$极限爆炸,所以我们要换一 ...
- 【BZOJ1096】[ZJOI2007]仓库建设 斜率优化
[BZOJ1096][ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司 ...
- bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)
题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...
- BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4201 Solved: 1851[Submit][Stat ...
- 【BZOJ-1096】仓库建设 斜率优化DP
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3719 Solved: 1633[Submit][Stat ...
- 【bzoj1096】[ZJOI2007]仓库建设 斜率优化dp
题目描述 L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L ...
- P2120 [ZJOI2007]仓库建设 斜率优化dp
好题,这题是我理解的第一道斜率优化dp,自然要写一发题解.首先我们要写出普通的表达式,然后先用前缀和优化.然后呢?我们观察发现,x[i]是递增,而我们发现的斜率也是需要是递增的,然后就维护一个单调递增 ...
- 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP
做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...
随机推荐
- WebDriver数据驱动模式
利用@dataprovider 在一个浏览器内多次登录不同的用户时,必须要每次完成一个登录后,都有一个退出登录的代码,以保持和初始登录页面一致,才不会报错并再次循环登录
- Celery-4.1 用户指南: Signals (信号)
基础 有多种类型的事件可以触发信号,你可以连接到这些信号,使得在他们触发的时候执行操作. 连接到 after_task_publish 信号的示例: from celery.signals impor ...
- Python代码规范总结
1.缩进问题: Tip:用4个空格来缩进代码 不要用Tab键或者是Tab和空格混用, vim用户可以将tab键设置为4个空格的长度.要么选择垂直对齐换行的元素, 或者是使用4空格悬挂式缩进(第一行没有 ...
- Hadoop集群 能打开50070端口不能打开8088端口 web浏览器界面
两天时间,知道现在才把这个东西解决 解决的灵感来源于百度知道一句话谢谢这个哥们 谢谢这个哥们! 我的目录是在/home/hadoop/tmp 大家如果遇到这个问题,希望能按照我的办法去试一下 2 ...
- taglib标签在web.xml文件中报错的解决办法
报错的原因分析: 在jsp2.0中,且2.4版的DTD验证中,taglib描述符,正确写法是放到<jsp-config></jsp-config>描述符中.所以,我们的tagl ...
- 详解CSS display:inline-block的应用(转)
详解CSS display:inline-block的应用 阅读目录 基础知识 inline-block的问题 inline-block的应用 总结 本文详细描述了display:inline-b ...
- IFC数据模式架构的四个概念层详解说明
IFC模型体系结构由四个层次构成,从下到上依次是 资源层(Resource Layer).核心层(Core Layer).交互层(Interoperability Layer).领域层(Domain ...
- Linux,du、df统计的硬盘使用情况不一致问题
[转]http://blog.linezing.com/?p=2136 Linux,du.df统计的硬盘使用情况不一致问题 在运维Linux服务器时,会碰到需要查看硬盘空间的情况,这时候,通常会使 ...
- ASCII\UNICODE编码的区别
前几天,Google给我Hotmail邮箱发了封确认信.我看不懂,不是因为我英文不行,而是"???? ????? ??? ????"的内容让我不知所措.有好多程序员处理不好编码问题 ...
- Luogu 4137 Rmq Problem / mex
一个主席树题. 一开始想着直接动态开点硬搞就可以了,每次查询只要作一个类似于前缀和的东西看看区间有没有满,在主席树上二分就可以了. 但是这样是错的,因为一个权值会出现很多次……然后就错了. 所以我们考 ...